Skip to main content
Log in

Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nickel Superalloy GH3536 Obtained by Selective Laser Melting

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of heat treatment on the mechanical properties and microstructure of refractory nickel alloy GH3536 obtained by selective laser melting is determined. Growth in the quenching temperature is accompanied by lowering of the ultimate strength and of the yield limit under static tension, while the elongation increases. After 1-h quenching from 1100°C and 10-h aging at 700°C the fracture behavior of the alloy changes from brittle one to ductile one, the strength and the hardness decrease, and the ductility grows by about a factor of 3.5 as compared to the initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Bhushan and M. Caspers, “An overview of additive manufacturing (3D printing) for microfabrication,” Microsyst. Technol., 23, 1117 – 1124 (2017).

    Article  Google Scholar 

  2. L. Li, “China’s manufacturing locus in 2025” with a comparison of “Made-in-China 2025” and “Industry 4.0,” Technol. Forecast. Soc. Change, 135, 66 – 74 (2018).

  3. I. Yadroitsev, P. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci., 253, 8064 – 8069 (2007).

    Article  CAS  Google Scholar 

  4. J. P. Kruth, L. Froyen, and J. Van Varenbergh, “Selective laser melting of iron-based powder,” J. Mater. Proc. Technol., 149, 616 – 622 (2004).

    Article  CAS  Google Scholar 

  5. Q. B. Jia and D. D. Gu, “Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties,” J. Alloys Compd., 585, 713 – 721 (2014).

    Article  CAS  Google Scholar 

  6. Z. G. Zhao, L. Bo, L. Li, and J. Y. Huang, “Status and progress of selective laser melting forming technology,” Aeronaut. Manuf. Technol., 463, 4 – 49 (2014).

    Google Scholar 

  7. E. N. Kablov, A. G. Evgenov, I. S. Mazalov, et al., “Evolution of the structure and properties of high-chromium heat-resistant VZh159 alloy prepared by selective laser melting: part I,” Inorg. Mater. Appl. Res., 11(1), 7 – 16 (2020).

    Article  Google Scholar 

  8. N. V. Dynin, V. V. Antipov, D. V. Khasikov, et al., “Structure and mechanical properties of an advanced aluminum alloy AlSi10MgCu(Ce, Zr) produced by selective laser melting,” Mater. Lett., 284, 128898 (2021).

    Article  CAS  Google Scholar 

  9. A. Y. Nalivaiko, D. Y. Ozherelkov, A. N. Arnautov, et al., “Selective laser melting of aluminum-alumina powder composites obtained by hydrothermal oxidation method,” Appl. Phys. A, 126, 1 – 6 (2020).

    Article  CAS  Google Scholar 

  10. R. Margan, C. J. Sutliffe, and W. O’Neill, “Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives,” J. Mater. Sci., 39, 1195 – 1205 (2004).

    Article  Google Scholar 

  11. R. D. Li, J. H. Liu, Y. S. Shi, et al., “Balling behavior of stainless steel and nickel powder during selective laser melting process,” Int. J. Adv. Manuf. Technol., 59, 1025 – 1035 (2012).

    Article  Google Scholar 

  12. R. D. Li, J. H. Liu, Y. S. Shi, et al., “316L stainless steel with gradient porosity fabricated by selective laser melting,” J. Mater. Eng. Perform., 19, 666 – 671 (2010).

    Article  CAS  Google Scholar 

  13. D. D. Gu and Y. F. Shen, “Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods,” Mater. Design, 30, 2903 – 2910 (2009).

    Article  CAS  Google Scholar 

  14. Q. B. Jia and D. D. Gu, “Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance,” J. Mater. Res., 29, 1960 – 1969 (2014).

    Article  CAS  Google Scholar 

  15. Y. L. Li and D. D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder,” Mater. Design, 63, 856 – 867 (2014).

    Article  CAS  Google Scholar 

  16. X. D. Shao, Y. Q. Liu, and Y. Li, “Research progress of elemental analysis in nickel-based alloys,” Metall. Anal., 30, 38 – 48 (2010).

    Google Scholar 

  17. M. Yan, B. Liu, and J. Li, “China aeronautical materials handbook, Powder metallurgy superalloy,” Precision Alloy Func. Mater., 5, 5 – 11 (2001).

    Google Scholar 

  18. Z. H. Jiao, L. M. Lei, H. C. Yu, et al., “Experimental evaluation of elevated temperatures fatigue and tensile properties of one selective laser melted nickel based superalloy,” Int. J. Fatigue, 212, 172 – 180 (2019).

    Article  CAS  Google Scholar 

  19. B. Kong, T. Li, and Q. T. Eri, “Normal spectral emissivity of GH3536 (Hastelloy X) in three surface conditions,” Appl. Therm. Eng., 113, 20 – 26 (2017).

    Article  CAS  Google Scholar 

  20. K. Tuchida, K. Wathanyu, and S. Surinphong, “High temperature tribological characterization of Ti-based coatings on Hastelloy X,” Adv. Sci. Lett., 19, 913 – 917 (2013).

    Article  CAS  Google Scholar 

  21. T. Dacian, T. Yang, and P. A. Rometschet al., “Influence of past heat treatments on anisotropy of mechanical behavior and microstructure of Hastelloy-X parts produced by selective laser melting,” Mater. Sci. Eng., 667, 42 – 53 (2016).

  22. J. C. Zhao, M. Larsen, and V. Ravikumar, “Phase precipitation and time-temperature-transformation diagram of Hastelloy X,” Mater. Sci. Eng., 293, 112 – 119 (2000).

    Article  Google Scholar 

  23. X. Z. Qin, J. T. Guo, C. Yuan, et al., “Precipitation and thermal instability of M23C6 carbide in cast Ni-base superalloy K452,” Mater. Lett., 62, 258 – 261 (2008).

    Article  CAS  Google Scholar 

  24. T. A. Ramanarayanan, C. M. Chun, and G. Bhargava, “Metal dusting corrosion of nickel-based alloys,” J. Electrochem. Soc., 154, C231 – C240 (2007).

    Article  CAS  Google Scholar 

  25. H. Li, Study on Grain Boundary Segregation and Grain Boundary Precipitation in Ni – Cr – Fe Alloy, Shanghai University, Shanghai (2011), 239 p.

    Google Scholar 

  26. D. L. Li, X. Y. Qiao, and Q. B. Liu, “Precipitation phase analysis of GH4199 nickel-based superalloy,” Metall. Anal., 25, 1 – 6 (2006).

    Google Scholar 

  27. Y. S. Song,W. F. Gao, C.Wang, et al., “Effects of heat treatment process on microstructure, mechanical properties and corrosion resistance of Inconel 718 alloy,” Mater. Eng., 6, 37 – 42 (2012).

    Google Scholar 

  28. A. Suzuki and T. M. Pollock, “High-temperature and deformation of γ′/γ′ two-phase Co – Al – W-base alloys,” Acta Mater., 56, 1288 – 1297 (2008).

    Article  CAS  Google Scholar 

Download references

The authors gratefully acknowledge the support of the Key R&D Program of the Ministry of Science and Technology of China (2016YFB1102602), of the National Nature Science Foundation of China (Grant No. 11504144), of the Talent Starting Foundation of the Jiangsu University (Grant No. 15JDG133), and of the Young Leading Teachers Project of the Jiangsu University.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 25 – 31, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Li, Z., Chen, Y. et al. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nickel Superalloy GH3536 Obtained by Selective Laser Melting. Met Sci Heat Treat 63, 369–374 (2021). https://doi.org/10.1007/s11041-021-00697-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00697-3

Key words

Navigation