Skip to main content
Log in

Effect of Heat Treatment on Microstructure and Mechanical Behavior of a Welded Joint from Heat Resistant Steel SA-335 P5

  • Published:
Metal Science and Heat Treatment Aims and scope

The microstructure and mechanical properties of a welded joint from heat resistant steel SA-335 P5 have been studied directly after welding (as-welded), after post-weld open-flame heat treatment (PWOFHT), and after post-weld electric heat treatment (PWEHT). The elemental content of the welded joint and Vickers hardness were determined. Tensile and bending tests were conducted. A positive effect of heat treatment (especially, PWEHT) on the mechanical properties and structure of the welded joint was shown. It was established that after the PWEHT, the welded joint from steel P5 meets the material requirements of the petrochemical industry. The use of as-welded joint from this steel is not recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. X. M. Pan, X. Li, L. Chang, et al. “Thermal-mechanical fatigue behavior and lifetime prediction of P92 steel with different phase angles,” Int. J. Fatigue, 109, 126 – 136 (2018).

    Article  CAS  Google Scholar 

  2. J. Wei and Y. Kadda, “Effect of welding sequence on residual stress distribution in a multipass welded piping branch junction,” Int. J. Pres. Vessel. Pip., 95, 39 – 47 (2012).

    Article  Google Scholar 

  3. A. Placido, G. Eugenio, and S. Andrea, “Damage assessment of topping furnaces radiant tubes and creep behavior of ASTM A335 P5 steel,” Mat. High. Temp., 37(2), 81 – 88 (2020).

    Article  Google Scholar 

  4. F. Masuyama, “Effect of specimen size and shape on creep rupture behavior of creep strength enhanced ferritic steel welds,” Int. J. Pres. Vessel. Pip., 87, 617 – 623 (2010).

    Article  CAS  Google Scholar 

  5. L. Vojteh, S. Borivoj, and J. Gorazd, “The influence of austenitizing and tempering temperature on the hardness and fracture toughness of hot-worked H11 tool steel,” J. Mater. Process. Tech., 178, 328 – 334 (2006).

    Article  Google Scholar 

  6. J. Mehdi and B. Forough, “Investigating hot corrosion behavior of SA 312 TP321H stainless steel and SA 335 P5 ferritic steel and their dissimilar weldment in corrosive salt environment,” Oxid. Metals., 89(5 – 6), 589 – 607 (2018).

    Google Scholar 

  7. M. Dunðer, T. Vuherer, I. Samardžić, and D. Marić, “Analysis of heat-affected zone microstructures of steel P92 after welding and after post-weld heat treatment,” Int. J. Adv. Manuf. Technol., 102(9 – 12), 3801 – 3812 (2019).

    Article  Google Scholar 

  8. D. Chaouch, S. Guessasma, and A. Sadok, “Finite element simulation coupled to optimisation stochastic process to assess the effect of heat treatment on the mechanical properties of 42CrMo4 steel,” Mater. Design., 34, 679 – 684 (2012).

    Article  CAS  Google Scholar 

  9. L. Y. Miao, Y. Xu, H. Y. Jing, et al., “Experimental and numerical investigation of heated band width for local post weld heat treatment of ASME P92 steel pipe,” J. Pres. Vessel. Technol., 136(2), 011401 – 011408 (2014).

    Google Scholar 

  10. W. F. Fan, S. S. Ao, Y. F. Huang, et al., “Water cooling keyhole gas tungsten arc welding of HSLA steel,” Int. J. Adv. Manuf. Technol., 92(5 – 8), 2207 – 2216 (2017).

    Article  Google Scholar 

  11. C. Pandey, M. M. Mahapatra, P. Kumar, et al. “Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint,” J. Manuf. Process, 28, 220 – 234 (2017).

    Article  Google Scholar 

  12. C. Pandey, M. M. Mahapatra, P. Kumar, et al., “Effect of post weld heat treatments on microstructure evolution and type IV cracking behavior of the P91 steel welds joint,” J. Mater. Process. Tech., 266, 140 – 154 (2019).

    Article  CAS  Google Scholar 

  13. C. Pandey, A. Giri, and M. M. Mahapatra, “Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties,” Mater. Sci. Eng. A, 664, 58 – 74 (2016).

    Article  CAS  Google Scholar 

  14. C. Pandey, M. M. Mahapatra, P. Kumar, et al., “Softening mechanism of P91 steel weldments using heat treatments,” Archives. Civ. Mech. Eng., 19, 297 – 310 (2019).

    Article  Google Scholar 

  15. X. H. Zhang, Y. P. Zeng, W. H. Cai, et al., “Study on the softening mechanism of P91 steel,” Mater. Sci. Eng. A, 827, 63 – 71 (2018).

    Article  Google Scholar 

  16. Z. Q. Xu, Y. Z. Shen, Z. X. Shang, et al., “Precipitate phases in ferriticmartensitic steel P92 after thermomechanical treatment,” J. Nucl. Mater., 509, 355 – 365 (2018).

    Article  CAS  Google Scholar 

  17. N. Saini, C. Pandey, and M. Mahapatra, “Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature,” Mater. Sci. Eng. A, 688, 250 – 261 (2017).

    Article  CAS  Google Scholar 

  18. N. Saini, R. S. Mulik, and M. M. Mahapatra, “Influence of filler metals and PWHT regime on the microstructure and mechanical property relationships of CSEF steels dissimilar welded joints,” Int. J. Pres. Vessel. Pip., 170, 1 – 9 (2019).

    Article  CAS  Google Scholar 

  19. F. Abe, “Influence of chemical compositions and creep test conditions on UK R5 creep ductility parameter lambda of W – Mo-balanced 9Cr steel,” Mat. High. Temp., 37(5), 309 – 320 (2020).

    Article  CAS  Google Scholar 

  20. K. Vigantas, V. V. Algirdas, and C. Olegas, “Effect of PWHT on the mechanical properties of P5 steel welded joints,” Solid State Phenom., 165, 104 – 109 (2010).

    Article  Google Scholar 

  21. K. Zhang, M. Zhang, H. Z. H. Guo, et al., “A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel,” Mater. Sci. Eng. A, 29(30), 8486 – 8491 (2011).

    Article  Google Scholar 

  22. ASME Boiler and Pressure Vessel Code An International Code, Section IX, Two Park Avenue, New York (2019), pp. 110 – 115.

  23. Y. P. Zeng, J. D. Jia, W. H. Cai, et al., “Effect of long-term service on the precipitates in P92 steel,” Int. J. Min. Met. Mater., 25(8), 913 – 921 (2018).

    Article  CAS  Google Scholar 

  24. G. H. Carvalho,W. R. Cordeiro, and J. C. P. Filho, “Influence of lengthdiameter ratio and post weld heat treatment on collapse resistance of welded pipes,” Int. J. Pres. Vessel. Pip., 171, 224 – 232 (2019).

    Article  CAS  Google Scholar 

Download references

The authors would like to express their gratitude to the Advanced Material Testing and Analysis Center at the Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhentai Zheng.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 51 – 59, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Zheng, Z., Yu, J. et al. Effect of Heat Treatment on Microstructure and Mechanical Behavior of a Welded Joint from Heat Resistant Steel SA-335 P5. Met Sci Heat Treat 63, 280–288 (2021). https://doi.org/10.1007/s11041-021-00683-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00683-9

Key words

Navigation