Skip to main content
Log in

Estimation of Hardness During Heat Treatment of Steels

  • SIMULATION
  • Published:
Metal Science and Heat Treatment Aims and scope

A hardness model employing the end quench Jominy method is developed for steels C25, EN8, EN19, EN31 and EN24. The time-temperature data are obtained from four thermocouples mounted at critical places of a specimen. The heat flux during the quenching is determined from the cooling curve obtained with the help of the thermocouple closest to the end of the specimen (quenching place). The two-dimensional axisymmetric equation of heat conduction is solved and used jointly with the models of decomposition of austenite to obtain the distribution of microstructure at the places used to plot the cooling curves. The computed distribution of microstructure and the chemical compositions of the steels are used to estimate the hardness. The computed hardness values agree well with those determined experimentally over the length of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. J. V. Beck, B. Blackwell, and R. C. Jr. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York (1985).

    Google Scholar 

  2. A. M. Osman and J. V. Beck, J. Heat Transfer, 112, 843 – 848 (2004).

    Article  Google Scholar 

  3. T. S. Prasanna Kumar, Numer. Heat Transfer B, 45, 541 – 563 (2004).

    Article  Google Scholar 

  4. T. S. Prasanna Kumar and H. C. Kamath, Metall. Mater. Trans. B, 35, 575 – 585 (2004).

    Article  Google Scholar 

  5. S. Arunkumar, K. V. S. Rao, and T. S. Prasanna Kumar, Int. J. Heat Mass Transfer, 51, 2676–2685 (2008).

    Article  CAS  Google Scholar 

  6. G. S. Sarmiento, X. Chen, J. Vega, et al., in: Proc. 20th ASM Heat Treating Society Conf., St. Louis, MO (2000).

  7. J.-W. Zhou and S. P. Mahulikar, Exp. Heat Transfer, 19, 297 – 308 (2006).

    Article  CAS  Google Scholar 

  8. K. N. Prabhu and A. Prasad, J. Mater. Eng. Perform., 12, 48 – 55 (2003).

    Article  CAS  Google Scholar 

  9. T. S. Prasanna Kumar, B. Raghunatha Rao, and V. Choudhury, in: Proc. Int. heat Treat. 2004, ASM Int., Chennai, India (2004).

    Google Scholar 

  10. K. Babu and T. S. Prasanna Kumar, Matall. Mater. Trans. B, 41B, 214 – 224 (2010).

    Article  CAS  Google Scholar 

  11. K. Babu and T. S. Prasanna Kumar, J. Heat Trans-T ASME, 133, 071501 (8 p.) (2011).

  12. K. Babu and T. S. Prasanna Kumar, Int. Heat Mass Transf., 54,106 – 117 (2011).

    Article  CAS  Google Scholar 

  13. J. S. Kirkaldy and D. Venugopalan, Phase Transformations in Ferrous Alloys, AIME, Warrendale, PA (125 – 148) (1983).

    Google Scholar 

  14. B. Buchmayr and J. S. Kirkaldy, J. Heat Treat., 8, 127 – 136 (1990).

    Article  CAS  Google Scholar 

  15. D. F. Watt, L. Coon, M. Bibby, et al., Acta Metall., 36, 3029 – 3035 (1998).

    Article  Google Scholar 

  16. T. C. Nguyen and D. C. Weckman, Metall. Mater. Trans. B, 37B, 275 – 292 (2006).

    Article  CAS  Google Scholar 

  17. P. Akerstrom and M. Oldenburg, J. Mater. Proc. Technol., 174, 399 – 406 (2006).

    Article  Google Scholar 

  18. V. M. Li, D. V. Niebuhr, L. L. Meekisho, and D. G. Atteridge, Metall. Mater. Trans. B, 29B, 661 – 672 (1998).

    Article  CAS  Google Scholar 

  19. T. S. Prasanna Kumar, “Coupled analysis of surface heat flux, microstructure evolution, and hardness during immersion quenching of a medium carbon steel in plant conditions,” Mater. Perform. Charact., 9(5), ID MPC1044770020 (2012).

  20. TmmFE by Thermet Solutions, http://www.thermetsolutions.com.

  21. P. Maynier, J. Dollet, and P. Bastein, Hardenability Concepts with Applications to Steels, AIME, New York (1978), pp. 518 – 544.

    Google Scholar 

  22. JMatPro by Sente Software, http://www.sentesoftware.co.uk.

  23. W. A. Johnson and R. F. Mehl, Trans. AIME, 135, 416 – 458 (1939).

    Google Scholar 

  24. M. Avrami, J. Chem. Phys., No. 7, 1103 – 1112 (1939).

  25. M. Avrami, J. Chem. Phys., No. 8, 212 – 224 (1940).

  26. D. P. Kiostinen and R. E. Marburger, Acta Metall., 7, 59 – 60 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Abhaya Simha.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 51 – 58, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simha, N.R.A., Sushanth, M.P., Sachin, V.B. et al. Estimation of Hardness During Heat Treatment of Steels. Met Sci Heat Treat 61, 448–454 (2019). https://doi.org/10.1007/s11041-019-00444-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00444-9

Key words

Navigation