Skip to main content
Log in

Microstructure and Fracturing Behavior of AA7075–T651 Aluminum Alloy Cooled During Friction Stir Welding

  • Published:
Metal Science and Heat Treatment Aims and scope

Friction-stir-welded joints of 16-mm-thick plates of AA7075 aluminum alloy have been studied. The macrostructure of the weld region over the thickness of the plates and microstructures of various regions of the welded joint were determined using optical and transmission electron microscopes. Tensile testing of the welded samples was conducted, and the average values of the ultimate strength and yield point, as well as relative elongation were calculated. The Vickers hardness profiles in the middle of the cross-section of the welded joint were measured. Friction stir welding with forced cooling (by a compressed air flow or water immersion) was tested to reduce heat damage and improve mechanical properties. The efficiency of such welding has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. K. Abhay and K. Sreekumar, “Metallurgical studies on cracked Al – 5.5Zn – 2.5Mg – 1.5Cu aluminum alloy injector disc of turbine rotor,” J. Failure Analysis Prevent., 4, 327 – 332 (2008).

    Google Scholar 

  2. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Church, P. Temple-Smith, and C. J. Dawes, GB Patent Application No. 9125978.8, December (1991).

  3. J. Q. Sua, T.W. Nelson, and C. J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys,” Mater. Sci. Eng. A, 405, 277 – 286 (2005).

    Article  Google Scholar 

  4. H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Mater. Sci. Eng. A, 419, 25 – 31 (2006).

    Article  Google Scholar 

  5. H. B. Chen, K. Yan, T. Lin, S. B. Chen, C. Y. Jiang, and Y. Zhao, “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Mater. Sci. Eng. A, 433, 64 – 69 (2006).

    Article  Google Scholar 

  6. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R, 50, 1 – 78 (2005).

    Article  Google Scholar 

  7. K. A. A. Hassan, P. B. Prangnell, A. F. Norman, D. A. Price, and S. W. Williams, “Effect of welding parameters on nugget zone microstructure and properties in high strength aluminum alloy friction stir welds,” Sci. Technol. Weld. Join., 8, 257 – 268 (2003).

    Article  CAS  Google Scholar 

  8. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling, and C. C. Bampton, “Effects of friction stir welding on microstructure of 7075 aluminum,” Scr. Mater., 36, 69 – 75 (1997).

    Article  CAS  Google Scholar 

  9. K. V. Jata, K. K. Sankaran, and J. J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451,” Metall. Mater. Trans. A, 31A, 2181 – 2192 (2000).

    Article  CAS  Google Scholar 

  10. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, and W. H. Bingel, “Properties of friction-stir-welded 7075 T651 aluminum,” Metall. Mater. Trans. A, 29A, 1955 – 1964 (1998).

    Article  CAS  Google Scholar 

  11. M. Peel, A. Steuwer, M. Preuss, and P. J. Withers, “Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds,” Acta Mater., 51, 4791 – 4801 (2003).

    Article  CAS  Google Scholar 

  12. A. P. Reynolds, W. D. Lockwood, and T. U. Seidel, “Processing-property correlation in friction stir welds,” Mater. Sci. Forum, 331 – 337, 1719 – 1724 (2000).

    Article  Google Scholar 

  13. H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, “Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy,” J. Mater. Proc. Technol., 142, 692 – 696 (2003).

    Article  CAS  Google Scholar 

  14. B. Yang, J. Yan, M. A. Sutton, and A. P. Reynolds, “Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds, Part I. Metallurgical studies,” Mater. Sci. Eng. A, 364, 55 – 65 (2004).

    Article  Google Scholar 

  15. K. A. A. Hassan, A. F. Norman, and P. B. Prangnell, “The stability of the nugget zone grain structure in AA7010 alloy friction stir welds during solution treatment,” Mater. Sci. Forum, 396 – 402, 1549 – 1554 (2002).

    Article  Google Scholar 

  16. K. A. A. Hassan, A. F. Norman, and P. B. Prangnell, “The effect of welding conditions on the microstructure and mechanical properties of the nugget zone in AA7010 alloy friction stir welds,” in: Third International Symposium on Friction Stir Welding, Kobe, Japan (2001).

  17. K. V. Jata, “Friction stir welding of high strength aluminum alloys,” Mater. Sci. Forum, 331 – 337, 1701 – 1712 (2000).

    Article  Google Scholar 

  18. J. D. Robson, A. Sullivan, H. R. Shercliff, and G. McShane, “Microstructural evolution during friction stir welding of AA7449,” in: Fifth International Friction Stir Welding Symposium, Metz, France (2004).

  19. Y. C. Chen, H. J. Liu, and J. C. Feng, “Effect of post-weld heat treatment on the mechanical properties of 2219-O friction stir welded joints,” J. Mater. Sci., 41(1), 297 – 299 (2006).

    Article  CAS  Google Scholar 

  20. H. J. Liu, Y. C. Chen, and J. C. Feng, “Effect of heat treatment on tensile properties of friction stir welded joints of 2219-T6 aluminum alloy,” Mater. Sci. Technol., 22(2), 237 – 241 (2006).

    Article  Google Scholar 

  21. S. Benavides, Y. Li, L. E. Murr, D. Brown, and J. C. McClure, “Low-temperature friction-stir welding of 2024 aluminum,” Scr. Mater., 41, 809 – 815 (1999).

    Article  CAS  Google Scholar 

  22. P. Staron, M. Kocak, and S. Williams, “Residual stresses in friction stir welded Al sheets,” Appl. Phys. A, 74, 1161 – 1162 (2002).

    Article  Google Scholar 

  23. T. W. Nelson, R. J. Steel, and W. J. Arbegast, “In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminum alloys,” Sci. Technol. Weld. Join., 8(4), 283 – 288 (2003).

    Article  CAS  Google Scholar 

  24. J. Q. Su, T. W. Nelson, and C. J. Sterling, “A new route to bulk nanocrystalline materials,” J. Mater. Res., 18(8), 1757 – 1760 (2003).

    Article  CAS  Google Scholar 

  25. L. Fratini, G. Buffa, and R. Shivpuri, “In-process heat treatments to improve FS-welded butt joints,” Int. J. Adv. Manuf. Technol., 43, 664 – 670 (2009).

    Article  Google Scholar 

  26. L. Fratini, G. Buffa, and R. Shivpuri, “Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints,” Acta Mater., 58, 2056 – 2067 (2010).

    Article  CAS  Google Scholar 

  27. H. J. Liu, H. J. Zhang, Y. X. Huang, and L. Yu, “Mechanical properties of underwater friction stir welded 2219 aluminum alloy,” Trans. Nonfer. Met. Soc. China, 20, 1387 – 1391 (2010).

    Article  CAS  Google Scholar 

  28. P. Upadhyay and A. P. Reynolds, “Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets,” Mater. Sci. Eng. A, 527, 1537 – 1543 (2010).

    Article  Google Scholar 

  29. H. J. Zhang, H. J. Liu, and L. Yu, “Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints,” Mater. Design, 32, 4402 – 4407 (2011).

    Article  CAS  Google Scholar 

  30. C. Sharma, D. K. Dwivedi, and P. Kumar, “Influence of in-process cooling on tensile behavior of friction stir welded joints of AA7039,” Mater. Sci. Eng. A, 556, 479 – 487 (2012).

    Article  CAS  Google Scholar 

  31. Z. Zhang, B. L. Xiao, and Z. Y. Ma, “Influence of water cooling on microstructure and mechanical properties of friction stir welded 2014Al-T6 joints,” Mater. Sci. Eng. A, 614, 6 – 15 (2014).

    Article  CAS  Google Scholar 

  32. H. J. Zhang and H. J. Liu, “Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy,” Mater. Design, 45, 206 – 211 (2013).

    Article  CAS  Google Scholar 

  33. H. Papahn, P. Bahemmat, and M. Haghpanahi, “Study on governing parameters of thermal history during underwater friction stir welding,” Int. J. Adv. Manuf. Technol., 78, 1101 – 1111 (2015).

    Article  Google Scholar 

  34. T. Srinivasa Rao, G. Madhusudhan Reddy, and S. R. Koteswara Rao, “Microstructure and mechanical properties of friction stir welded AA7075-T651 aluminum alloy thick plates,” Trans. Nonfer. Met. Soc. China, 25, 1170 – 1178 (2015).

    Google Scholar 

  35. T. Srinivasa Rao, G. Madhusudhan Reddy, G. Srinivasa Rao, and S. R. Koteswara Rao, “Studies on salt fog corrosion behavior of friction stir welded AA7075-T651 aluminum alloy,” Int. J. Mater. Res., 105, 375 – 385 (2014).

    Article  Google Scholar 

  36. M. Selvaraj, V. Murali, and S. R. Koteswara Rao, “Mechanism of weld formation during friction stir welding of aluminum alloy,” Mater. Manuf. Proc., 28, 595 – 600 (2013).

    Article  CAS  Google Scholar 

  37. J. A. Wert, “Identification of precipitates in 7075 Al after hightemperature aging,” Scr. Mater., 15, 445 – 447 (1981).

    CAS  Google Scholar 

  38. G.W. Lorimer, “Precipitation in aluminum alloys,” in: K. C. Russell and H. I. Aaronson (eds.), Precipitation Processes in Solids, Metallurgical Society of AIME, Warrendale PA (1978), pp. 87 – 119.

    Google Scholar 

Download references

The authors acknowledge the financial support from the Armament Research Board, DRDO, Ministry of Defence, India, through an R&D project No. ARMREB/MAA/2012/142. The authors acknowledge the support provided by the DMRL, Hyderabad, for conducting friction stir welding trails. The authors would like to thank Dr. M. Selvaraj, Associate Professor, SSN College of Engineering, Chennai, for his help in computing the thermal cycles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Srinivasa Rao.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 48 – 55, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, T.S., Rao, S.R.K. & Reddy, G.M. Microstructure and Fracturing Behavior of AA7075–T651 Aluminum Alloy Cooled During Friction Stir Welding. Met Sci Heat Treat 61, 379–386 (2019). https://doi.org/10.1007/s11041-019-00433-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00433-y

Key words

Navigation