Skip to main content
Log in

Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Friction Stir Processed AZ91D Magnesium Alloy

  • MAGNESIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

We study the microstructure and mechanical properties of friction stir processed AZ91D cast magnesium alloy under various conditions of heat treatment. It is shown that, in the initial as-cast state, the structure of the alloy contained a continuously networked β-phase with an average grain size of 150 μm. The friction stir processed (FSP) specimens had an average grain size of 12 μm and smooth grain boundaries. The subsequent heat treatment of the FSP specimens at various temperatures between 150°C and 250°C led to the appearance of numerous particles of the β-phase. The FSP specimens heat-treated at 200°C had finer grains, a larger number of fine particles of the β-phase, and better mechanical properties than any other specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. A. Luo, “Applications: aerospace, automotive and other structural applications of magnesium,” in: Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publ., (2013), p. 266 – 316.

  2. Y. Estrin, S. S. Nene, B. P. Kashyap, N. Prabhu, and T. Al-Samman, Mater. Lett., 173 (2016) 252 – 256.

    Article  CAS  Google Scholar 

  3. M. K. Kulekci, Int. J. Adv. Manuf. Technol., 39, 851 – 865 (2008).

    Article  Google Scholar 

  4. A. Luo, J. Renaud, I. Nakatsugawa, and J. Plourde, JOM, 47, 28 – 31 (1995).

    Article  CAS  Google Scholar 

  5. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, J. Minerals, Metals & Mater. Soc., 60, 57 – 62 (2008).

    Article  CAS  Google Scholar 

  6. A. A. Luo and A. K. Sachdev, “Applications of magnesium alloys in automotive engineering,” in: Advances in Wrought Magnesium Alloys, Woodhead Publ. (2012), pp. 393 – 426.

  7. S. Shrestha, A. Sturgeon, P. Shashkov, and A. Shatrov, “Improved corrosion performance of AZ91D magnesium alloy coated with the Keronite_process,” in: Essential Readings in Magnesium Technology, Springer (2016), pp. 603 – 607.

  8. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R: Reports, 50, 1 – 78 (2005).

    Article  Google Scholar 

  9. J. D. Robson, S. Cui, and Z. W. Chen, Mater. Sci. Eng. A, 527, 7299 – 7304 (2010).

    Article  Google Scholar 

  10. F. Chai, D. Zhang,W. Zhang, and Y. Li, Mater. Sci. Eng. A, 590, 80 – 87 (2014).

    Article  CAS  Google Scholar 

  11. D. Ni, D. Wang, A. Feng, G. Yao, and Z. Ma, Scr. Mater., 61, 568 – 571 (2009).

    Article  CAS  Google Scholar 

  12. P. Cavaliere and P. P. De Marco, J. Mater. Proc. Technol., 184, 77 – 83 (2007).

    Article  CAS  Google Scholar 

  13. A. H. Feng and Z. Y. Ma, Scr. Mater., 56, 397 – 400 (2007).

    Article  CAS  Google Scholar 

  14. W. H. Loke, R. Ibrahim, and S. Lathabai, “Improving the microstructure and mechanical properties of a cast Mg – 9Al –1Zn alloy using friction stir processing,” Mater. Sci. Forum, 838 – 839, 214 – 219 (2016).

    Article  Google Scholar 

  15. Z. Lu and D. Zhang, “Microstructure and mechanical properties of a fine-grained AZ91 magnesium alloy prepared by multipass friction stir processing,” Mater. Sci. Forum, 850, 778 – 783 (2016).

    Article  Google Scholar 

  16. R. S. Mishra, P. S. De, and N. Kumar, “Fundamental physical metallurgy background for FSW/P,” in: Friction Stir Welding and Processing: Science and Engineering, Springer: Cham. (2014) p. 59 – 93.

    Google Scholar 

  17. R. Vaira Vignesh and R. Padmanaban, Trans. Indian Inst. Metals, 1 – 15 (2017); https://doi.org/10.1007/s12666-017-1110-1.

    Article  CAS  Google Scholar 

  18. R. Vaira Vignesh, R. Padmanaban, M. Arivarasu, S. Thirumalini, J. Gokulachandran, and R. Mutyala Sesha Satya Sai, IOP Conf. Ser.: Mater. Sci. Eng., 149, 012208 (2016).

    Google Scholar 

  19. S. Mohan Kumar, R. Pramod, M. E. Shashi Kumar, and H. K. Govindaraju, Proc. Eng., 19, 178 – 185 (2014).

    Article  Google Scholar 

  20. M. Arivarasu, P. Roshith, R. Padmanaban, S. Thirumalini, K. V. Phani Prabhakar, and G. Padmanabham, Canad. Metallurg. Quart., 56, 232 – 244 (2017).

    Article  CAS  Google Scholar 

  21. T. Regułaa, E. Czekaja, A. Fajkiela, K. Saja, M. Lech-Gregab, and M. Bronickic, Arch. Foundry Eng., 10, 141 – 146 (2010).

    Google Scholar 

  22. F. Vesling and T. Ryspaev, Russ. J. Non-Ferrous Met., 48, 57 – 62 (2007).

    Article  Google Scholar 

  23. Y. Wang, G. Liu, and Z. Fan, Acta Mater., 54, 689 – 699 (2006).

    Article  CAS  Google Scholar 

  24. J. Liao, M. Hotta, K. Kaneko, and K. Kondoh, Scr. Mater., 61, 208 – 211 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vaira Vignesh.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 46 – 52, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraju, M., Vignesh, R.V. & Padmanaban, R. Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Friction Stir Processed AZ91D Magnesium Alloy. Met Sci Heat Treat 61, 311–317 (2019). https://doi.org/10.1007/s11041-019-00422-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00422-1

Key words

Navigation