Skip to main content
Log in

Effect of Cooling Rate on the Structure of Low-Carbon Low-Alloy Steel After Thermomechanical Controlled Processing

  • TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

The method of orientation microscopy (EBSD) is used to study the structure and texture of low-carbon low-alloy pipe steel after thermomechanical controlled processing (TMCP) and subsequent quenching at cooling rates 100 – 700 K/sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. K. Hulka, P. Peters, and F. Heisterkamp, “Tendencies in development of steels for large-size pipes,” Stal’, No. 10, 62 – 67 (1997).

  2. A. B. Arabey, “Requirements on the metal in gas pipelines,” Steel in Transl., 40(7), 601 – 608 (2010).

    Article  Google Scholar 

  3. D. J. Stalheim, “Recent schemes for alloying high-strength steels for cross-country oil-and-gas pipelines, Pt. 1,” Metallurg, No. 11, 53 – 66 (2013).

  4. E. Shigeru and N. Naoki, “Development of thermo-mechanical control process (TMCP) and high performance steel in JFE Steel,” JFE Techn. Rep., 20, 1 – 7 (2015).

    Google Scholar 

  5. Yu. D. Morozov, S. Yu. Nastich, M. Yu. Muratov, et al., “Obtaining high-quality properties of rolled material for large-diameter pipes based on formation of ferrite-bainite microstructure,” Metallurgist, 52(1 – 2), 21 – 28 (2008).

    Article  Google Scholar 

  6. M. Yu. Matrosov, A. A. Kichkina, A. A. Efimov, et al., “Simulating structure-forming processes in tube steels during controlled rolling with accelerated cooling,” Metallurgist, 51(7 – 8), 367 – 376 (2007).

    Article  Google Scholar 

  7. S. Yu. Nastich, Yu. D. Morozov, M. Yu. Matrosov, et al., “Assimilation of production in an MMK 500 mill of thick rolled sheet from low-alloy steels with improved strength and cold resistance properties,” Metallurgist, 55(11 – 12), 810 – 828 (2012).

    Article  Google Scholar 

  8. S. Y. Nastich, V. L. Kornilov, Y. D. Morozov, et al., “New steels for pipelines of strength class K54 – K60 (X70): Production experience at OAO MMK,” Steel in Transl., 39(5), 431 – 436 (2009).

    Article  Google Scholar 

  9. H. K. Sung, S. Y. Shin, B. Hwang, et al., “Effects of carbon equivalent and cooling rate on tensile and Charpy impact properties of high-strength bainitic steels,” Mater. Sci. Eng. A, 530(1), 530 – 538 (2011).

    Article  Google Scholar 

  10. Z. J. Xie, X. P. Ma, C. J. Shang, et al., “Nano-sized precipitation and properties of a low-carbon niobium micro-alloyed bainitic steel,” Mater. Sci. Eng. A, 641, 37 – 44 (2015).

    Article  Google Scholar 

  11. E. A. Goli-Oglu, L. I. Efron, and Yu. D. Morozov, “Effect of deformation regime in main samples of controlled rolling on pipe steel microstructure,” Metal Sci. Heat Treat., 55(5 – 6), 294 – 297 (2013).

    Article  Google Scholar 

  12. I. Y. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 60(3 – 4), 405 – 412 (2016).

    Article  Google Scholar 

  13. M.-C. Zhao, K. Yang, and Y. Shan, “The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel,” Metal Sci. Eng. A, 335(1 – 2), 14 – 20 (2002).

    Article  Google Scholar 

  14. M. L. Lobanov, G.M. Rusakov, V. N. Urtsev, et al., “Thermal effect of bainitic transformation in tube steel by accelerated cooling,” Lett. Mater., 8(2), 246 – 251 (2018).

    Article  Google Scholar 

  15. M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, et al., “Investigation of special misorientations in lath martensite of low-carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr., 117(3), 254 – 259 (2016).

    Article  Google Scholar 

  16. M. L. Lobanov, M. D. Borodina, S. V. Danilov, et al., “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel in Transl., 47(11), 710 – 716 (2017).

    Article  Google Scholar 

  17. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, et al., “Special misorientations and textural heredity in the commercial alloy Fe – 3% Si,” Phys. Met. Metallogr., 115(8), 775 – 785 (2014).

    Article  Google Scholar 

  18. M. Holscher, D. Raabe, and K. Lucke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).

    Article  Google Scholar 

  19. L. Kestens and J. J. Jonas, “Transformation and recrystallization textures associated with steel processing,” in: S. L. Semiatin (ed.), Metalworking: Bulk Forming, ASM Handbook, ASM International, Materials Park, Ohio, USA (2005), Vol. 14A, pp. 685 – 700.

    Google Scholar 

  20. B. Hutchinson, L. Ryde, E. Lindh, et al., “Texture in hot rolled austenite and resulting transformation products,” Mater. Sci. Eng. A, 257(1), 9 – 17 (1998).

    Article  Google Scholar 

  21. T. Tomida and M.Wakita, “Transformation texture in hot-rolled steel sheets and its quantitative prediction,” ISIJ Int., 52(4), 601 – 609 (2012).

    Article  Google Scholar 

  22. N. Nakada, H. Ito, Y. Matsuoka, et al., “Deformation-induced martensitic transformation behavior in cold-rolled and colddrawn type 316 stainless steels,” Acta Mater., 58(3), 895 – 903 (2010).

    Article  Google Scholar 

  23. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford (2004), 574 p.

    Google Scholar 

  24. Yu. N. Gornostyrev, M. I. Katsnelson, A. R. Kuznetsov, and A. V. Trefilov, “Role of grain boundaries in heterogeneous nucleation of martensite phase,” in: V. N. Urtsev (ed.), Phase and Structural Transformations in Steels, Coll. Works [in Russian], Magnitogorsk (2001), Issue 1, pp. 209 – 219.

  25. H. K. D. H. Bhadeshia, “Martensite and bainite in steels: Transformation mechanism & mechanical properties,” J. De Physique IV, 7(5), C5-367 – C5-376 (1997).

    Google Scholar 

Download references

The authors acknowledge the contribution of the program supporting the leading universities of the RF for raising their competitiveness No. 211 of the Government of the Russian Federation No. 02.A03.21.0006. They are also thankful to the MMK Company for support and assistance in the organization of the study. The work has been performed under Grant SP-259.2018.1 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 31 – 37, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.L., Krasnov, M.L., Urtsev, V.N. et al. Effect of Cooling Rate on the Structure of Low-Carbon Low-Alloy Steel After Thermomechanical Controlled Processing. Met Sci Heat Treat 61, 32–38 (2019). https://doi.org/10.1007/s11041-019-00373-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00373-7

Key words

Navigation