Skip to main content
Log in

Dependence of Nickel Superalloy Structural Defects on Selective Laser Fusion Process Parameters1

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of nickel superalloy ZhS6K-VI (the Ni – Co – Cr – Al – Ti – W– Mo – Nb system) after selective laser fusion (SLF) is studied. Structural components sensitive to the energy and rate of SLF parameters and to initial powder grain size are determined. Dependences of the geometric parameters and defects in the structure of the material after the SLF on grain composition of the powder and on the power and rate of the SLF are determined, and may be used for working out production regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Type of hatch (laser beam movement scheme during fusion).

References

  1. E. N. Kablov, “Innovative developments of FGUP VIAM GNTs RF for implementing “Strategic areas of development of materials and technology for process in the period up to 2030,” Aviats. Mater. Tekhnol., No. 1, 3 – 33 (2015).

  2. E. N. Kablov, O. G. Ospennikova, B. S. Lomberg, and V. V. Sidorov, “Priority areas of development of manufacturing technology for heat resistant materials for aero engine building,” Probl. Chern. Met. Materialoved., No. 3, 47 – 54 (2013).

  3. E. N. Kablov, “Development of VIAM for gas turbines and devices,” Kryl’ya Rodiny, No. 4, 31 – 33 (2010).

  4. S. N. Grigor’ev and T. V. Tarasova, “Possibilities of additive production technology for preparing complexly shaped components and preparing functional coatings from metal powders,” Metalloved. Term. Obrab. Met., No. 10(724), 5 – 10 (2015).

    Google Scholar 

  5. S. N. Grigor’ev, “Problems and prospects of developing domestic engineering production,” Inzh. Zh. Prilozh., No. 12, 3 – 7 (2011).

  6. E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, “Rapid manufacturing of metal components by laser forming,” Mach.-Tools Manu., 46(13), 1459 – 1468 (2006).

    Article  Google Scholar 

  7. I. Yu. Smurov, I. A. Movchan, I. A. Yadroitsev, et al., “Additive production by means of a laser,” Vestn. Mos. Gos. Tekh. Univ. “Stankin,” 2(4), 144 – 146 (2011).

  8. I. Yadroitsev and I. Smurov, “Selective laser melting technology from the single laser melted track stability to 3D parts of complex shape,” Phys. Proc., 5, 551 – 560 (2010).

    Article  Google Scholar 

  9. A. G. Evgenov, A. M. Rogalev, S. V. Nerush, and I. S. Mazalov, “Study of the properties of alloy ÉP648 prepared by selective laser melting of metal powder,” Trudy VIAM, No. 2 (2015), URL: http://www.viam-works.ru (access date 04.27.2016).

  10. Mumtaz Kamran Aamir, Erasenthiran Poonjolai, and Neil Hopkinson, “High density selective laser melting of Waspaloy,” J. Mater. Proc. Technol., 195, 77 – 87 (2008).

    Article  Google Scholar 

  11. Jia Qingbo and Gu Dongdong, “Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties,” J. Alloys Compounds, 585, 713 – 721 (2012).

    Google Scholar 

  12. T. Vilaro, C. Colinb, J. D. Bartoutb, et al., “Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy,” Mater. Sci. Eng. A, 534, 446 – 451 (2012).

    Article  CAS  Google Scholar 

  13. E. A. Lukina, O. A. Bazaleeva, N. V. Petrushin, and E. V. Tsvetkova, “Features of structure formation for nickel superalloy ZhS6K-VI with selective laser melting,” Tsvet. Met., No. 3, 57 – 63 (2016).

    Article  Google Scholar 

  14. K. O. Bazaleeva, E. V. Tsvetkova, I. Yu. Smurov, et al., “Cellular structure in austenitic alloys prepared by selective laser melting method,” Perspekt. Mater., No. 3, 55 – 62 (2014).

    Google Scholar 

  15. K. Kempen, E. Yasa, L. Thijs, et al., “Microstructure and mechanical properties of selective laser melted 18Ni-300 steel,” Phys. Proc., 12, 255 – 263 (2011).

    Article  CAS  Google Scholar 

  16. Wang Zemin, Guana Kai, Gao Ming, et al., “The microstructure and mechanical properties of deposited-IN718 by selective laser melting,” J. Alloys Compounds, 513, 518 – 523 (2012).

    Article  CAS  Google Scholar 

  17. K. N. Amato, S. M. Gaytan, L. E. Murr, et al., “Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting,” Acta Mater., 60, 2229 – 2239 (2012).

    Article  CAS  Google Scholar 

  18. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single track formation in selective laser melting of metal powders,” J. Mater. Proc. Technol., 210, 1624 – 1631 (2010).

    Article  CAS  Google Scholar 

  19. I. Yadroitsev, I. Yadroitsava, P. Bertrand, and I. Smurov, “Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks,” Rapid Prototyping J., 18(3), 201 – 208 (2012).

    Article  Google Scholar 

  20. Wang Di, Yang Yongqiang, Su Xubin, and Chen Yonghua, “Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM,” Int. J. Adv. Manuf. Technol., 58(9), 1189 – 1199 (2012).

    Google Scholar 

  21. H. Krauss and M. F. Zaeh, “Investigation of manufacturability and process reliability of selective laser melting,” Phys. Proc., 41, 815 – 822 (2013).

    Article  Google Scholar 

  22. R. Li, et al., “Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting,” Appl. Surf. Sci., 256, 4350 – 4356 (2010).

    Article  CAS  Google Scholar 

  23. Li Ruidi, Liu Jinhui, Shi Yusheng, et al., “316L stainless steel with gradient porosity fabricated by selective laser melting,” J. Mater. Eng. Perform., 19(5), 666 – 671 (2010).

    Article  Google Scholar 

  24. Y. Sun, A. Moroz, and K. Alrbaey, “Sliding wear characteristics and corrosion behavior of selective laser melted 316L stainless steel,” J. Mater. Eng. Perform., 23(2), 518 – 526 (2014).

    Article  CAS  Google Scholar 

  25. Luke N. Carter, Christopher Martin, Philip J. Withers, and Moataz M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behavior in SLM powder-bed fabricated nickel superalloy,” J. Alloys Compounds, 615, 338 – 347 (2014).

    Article  CAS  Google Scholar 

  26. O. A. Bytsenko, E. B. Chabina, E. V. Filonova, and A. M. Rogalev, “Correlation of structural defects of nickel superalloy prepared by selective laser melting and scanning strategy and parameters,” Nauka Obraz. (N. É. Bauman MGTU), No. 3, 121 – 132 (2016).

    Google Scholar 

  27. A. G. Girgor’yants, D. S. Kolchanov, R. S. Tret’yakov, and I. E. Malov, “Selective laser melting of metal powders, growth of thin-walled and cellular structures,” Tekhnol. Mashinostr., No. 10, 6 – 11 (2015).

    Google Scholar 

  28. P. N. Kilina, E. A. Morozov, S. E. Porozova, and I. V. Solnyshkov, “Study of metal powder based on titanium for selective laser melting,” Sovr. Probl. Nauki Obraz., No. 2-2, 143 – 151 (2015).

    Google Scholar 

  29. S. V. Nerush, A. G. Evgenov, “Study of finely dispersed metal powder, of superalloy grade ÉP648VI applied to laser LMD-melting and also evaluation of the quality of melted powder material based on nickel in a GTE rotor blade,” Trudy VIAM, No. 3, 1 (2014), URL: http://www.viam-works.ru (access date 04.27.2016).

  30. S. V. Nerush, A. G. Evgenov, A. S. Ermolaev, and A. M. Rogalev, “Study of finely dispersed metal powder of nickel superalloy for laser LMD melting,” Vopr. Materialoved., No. 4(76), 98 – 107 (2013).

    Google Scholar 

  31. A. G. Evgenov, S. V. Nerush, and S. A. Vasilenko, “Preparation and approval of finely dispersed metal powder of high-chromium alloy based on nickel used for laser LMD melting,” Trudy VIAM, No. 5, 1 (2014), URL: http://www.viam-works.ru (access date 04.27.2016).

  32. P. A. Lykov, E. V. Safonov, K. A. Bromer, and A. O. Shul’ts, “Preparation of metal micro-powders by gas dynamic atomization,” Vestn. Yuzh.-Ural. Gos. Univ., Ser. Mashin., Issue 33, 107 – 112 (2012).

  33. E. B. Chabina, A. A. Alekseev, E. V. Filonova, and E. A. Lukina, “Use of analytical microscopy method and x-ray structural analysis methods for studying structure-phase composition of metals,” in: Cool TestMat–2013, Coll. Works of All-Russia Conf. for Testing and Studying Material Properties [in Russian] (2013), pp. 32 – 37.

Download references

Work was carried out within the scope of implementing comprehensive scientific areas: 2.1. Fundamentally-orientated research and 10.4. Technology for preparing bi- and polymetal naturally reinforced metallic materials by direct laser synthesis from metal powders (“Strategic area of development of material and technology for processing in the period up to 2030”) [1].

Work was performed with financial support of the RFFI (grant No. 14-29-10220-ofi_m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Chabina.

Additional information

In the opinion of the editorial board the term “selective laser fusion” is disputable. The word combination as a whole implies a production operation, and “fusion” signifies a result, and not a process. In Russian technical language there is no production operation “fusion”, it is melting, i.e., bringing a charge or workpiece to a melting temperature. A more suitable construction is “selective laser melting” (editor’s note).

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 33 – 41, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabina, E.B., Filonova, E.V., Raevskikh, A.N. et al. Dependence of Nickel Superalloy Structural Defects on Selective Laser Fusion Process Parameters1. Met Sci Heat Treat 60, 373–380 (2018). https://doi.org/10.1007/s11041-018-0286-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0286-2

Key words

Navigation