Skip to main content
Log in

Special Features of the Structure of Laser-Welded Joints of Dissimilar Alloys Based on Titanium and Aluminum

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of laser-welded joints of parts having different thicknesses fabricated from alloys based on aluminum and titanium has been studied. Results of transmission and scanning electron microscopy measurements and x-ray diffraction analysis show that the diffusion interaction of microvolumes of two alloys in the weld leads to the formation of two interlayers: (i) a continuous intermetallic TiAl layer with thickness below 1 μm adjacent to the titanium alloy and (ii) a layer consisting of TiAl3 intermetallic dendrites with thickness of 2 – 6 μm adjacent to the TiAl layer. The average microhardness of the intermetallic layer is about 490 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. V. R. Ryabov and D. M. Rabkin, Welding of Dissimilar Materials [in Russian], Mashinostroenie, Moscow (1984), 239 p.

  2. S. M. Gurevich, Handbook on Welding of Non-Ferrous Metals [in Russian], Naukova Dumka, Kiev (1990), 512 p.

  3. G. A. Turichin, O. G. Klimova, and K. D. Babkin, “Peculiarities of structure formation in laser-welded joints between dissimilar materials of Al – Cu and Al –Ti systems,” Tsvetn. Met., No. 4, 45 – 50 (2014).

  4. V. A. Bataev, A. A. Nikulina, and A. A. Bataev, “The investigation of fracture processes in heterogeneous steels joined by the method of contact welding,” in: Proc. of the 3rd Int. IEEE Forum on Strategic Technologies (IFOST-2008), Novosibirsk – Tomsk (2008), pp. 75 – 76.

  5. A. Nikulina, A. Smirnov, and A. Chevakinskaya, “Formation of a transition zone structure in welded joints between dissimilar steels,” Appl. Mech. Mater., 698, 283 – 287 (2015).

    Article  Google Scholar 

  6. W. Chuaiphan, S. Chandra-Ambhorn, S. Niltawach, and B. Sornil, “Dissimilar Welding between AISI 304 Stainless steel and AISI 1020 carbon steel plates,” Appl. Mech. Mater., 268 – 270, 283 – 290 (2013).

    Google Scholar 

  7. B. Majumdar, R. Galun, A. Weisheit, and B. L. Mordike, ”Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser,” J. Mater. Sci., 32, 6191 – 6200 (1997).

    Article  Google Scholar 

  8. Y. Mishin and Chr. Herzig, “Diffusion in Al – Ti system,” Acta Mater., 48, 589 – 623 (2000).

    Article  Google Scholar 

  9. S. Chen, L. Li, Y. Chen, et al., “Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium,” Mater. Design, 32, 4408 – 4416 (2011).

    Article  Google Scholar 

  10. Y. Chen, S. Chen, and L. Li, “Effects of heat input on microstructure and mechanical properties of Al – Ti joints by rectangular spot laser welding-brazing method,” Int. J. Adv. Manuf. Technol., 44, 265 – 272 (2009).

    Article  Google Scholar 

  11. Z. Song, K. Nakata, A.Wu, and J. Liao, “Interfacial microstructure and mechanical properties of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove,” Mater. Sci. Eng. A, 560, 111 – 120 (2013).

    Article  Google Scholar 

  12. S. Chen, L. Li, Y. Chen, and J. Huang, “Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process,” J. Alloys Compds., 509, 891 – 898 (2011).

    Article  Google Scholar 

  13. M. Gao, C. Chen, Y. Gu, and X. Zeng, “Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys,” Materials, 7, 1590 – 1602 (2014).

    Article  Google Scholar 

  14. S. H. Chen, L. Q. Li, and Y. B. Chen, “Interfacial reaction mode and its influence on tensile strength in laser joining Al alloy to Ti alloy,” Mater. Sci. Technol., 2, 230 – 235 (2010).

    Article  Google Scholar 

  15. Y. Chen, S. Chen, and L. Li, “Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing,” Mater. Design, 31, 227 – 233 (2010).

    Article  Google Scholar 

  16. Y. Wei, W. Aiping, Z. Guisheng, and R. Jialie, “Formation process of the bonding joint in Ti/Al diffusion bonding,” Mater. Sci. Eng. A, 480, 456 – 463 (2008).

    Article  Google Scholar 

  17. W. Shouzheng, L. Yajiang, W. Juan, and L. Kun, “Improving of interfacial microstructure of Ti/Al joint during GTA welding by adopting pulsed current,” Int. J. Adv. Manuf. Technol., 73, 1307 – 1312 (2014).

    Article  Google Scholar 

  18. W. Shouzheng, L. Yajiang, W. Juan, et al., “Microstructure and joining mechanism of Ti/Al dissimilar joint by pulsed gas metal arc welding,” Int. J. Adv. Manuf. Technol., 70, 1137 – 1142 (2014).

    Article  Google Scholar 

  19. Y. C. Chen and K. Nakata, “Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys,” Mater. Design, 30, 469 – 474 (2009).

    Article  Google Scholar 

  20. W. H. Sohn, H. H. Bong, and S. H. Hong, “Microstructure and bonding mechanism of Al – Ti bonded joint using Al – 10Si – 1Mg filler metal,” Mater Sci. Eng. A, 355, 231 – 240 (2003).

    Article  Google Scholar 

  21. S. H. Chen, L. Q. Li, Y. B. Chen, and D. J. Liu, “Silicon diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al – 12Si filler wire,” Trans. Nonferrous Met. Soc. China, 20, 64 – 70 (2010).

    Article  Google Scholar 

  22. L. Xu, Y. Y. Cui, Y. L. Hao, and R. Yang, “Growth of intermetallic layer in multilaminated Ti/Al diffusion couples,” Mater. Sci. Eng. A, 435 – 436, 638 – 647 (2006).

    Article  Google Scholar 

  23. M. A. Gureeva, O. E. Grushko, and V. V. Ovchinnikov, “Weldable aluminum alloys in structures of transport vehicles,” Zagot. Proizvod. Mashinostr., No. 3, 11 – 22 (2009).

  24. V. S. Kovalenko, Metallographic Reagents [in Russian], Metallurgiya, Moscow (1981), 120 p.

  25. V. I. Makhnenko and A. S. Milenin, “Mathematical modeling of reactive diffusion processes in welding-brazing of titanium – aluminum lap joints,” Avtomat. Svarka, No. 10, 5 – 9 (2007).

  26. J. C. Schuster and M. Palm, “Reassessment of the binary aluminum-titanium phase diagram,” J. Phase Equilib. Diffus., 27, 255 – 277 (2006).

    Article  Google Scholar 

  27. F. Zhang, S. L. Chen, Y. A. Chang, and U. R. Kattner, “A thermodynamic description of the Ti – Al system,” Intermetallics, 5, 471 – 482 (1997).

    Article  Google Scholar 

  28. M. Sujata, S. Bhargava, and S. Sangal, “On the formation of TiAl3 during reaction between solid Ti and liquid Al,” J. Mater. Sci. Lett., 16, 1175 – 1178 (1997).

    Google Scholar 

Download references

Technological experiments were supported by Grant from the President of Russian Federation (project No. MK-7354.2015.8); investigations of the structure of welded joints were supported by the Russian Foundation for Basic Research (project No. 14-38-50511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Klimova-Korsmik.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 62 – 67, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulina, A.A., Smirnov, A.I., Turichin, G.A. et al. Special Features of the Structure of Laser-Welded Joints of Dissimilar Alloys Based on Titanium and Aluminum. Met Sci Heat Treat 59, 534–539 (2017). https://doi.org/10.1007/s11041-017-0185-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0185-y

Key words

Navigation