Skip to main content
Log in

Contact Wear of Steels Kh12M and R6M5

  • FRICTION AND WEAR
  • Published:
Metal Science and Heat Treatment Aims and scope

Comparative analysis of results of contact wear of steels Kh12M and R6M5 is performed with allowance for the structural evolution detected in experimental studies and by computer modeling. It is shown that metal matrix properties determine steel resistance to contact wear and the structural changes arising during wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. N. M. Ryzhov, “Technological provision of contact fatigue resistance for carburized heat-resistant steel gear wheels,” Metalloved. Term. Obrab. Met., No. 7, 39 – 45 (2010).

  2. R. Kisling and N. Lange, Nonmetallic Inclusions in Steel [Russian translation], Metallurgiya, Moscow (1968).

    Google Scholar 

  3. L. Chunhui, Modeling the Behavior of Inclusions in Plastic Deformation of Steels, Author’s Abstract of Doctoral’s Thesis: 05.2001. Division of Materials Forming Department of Production Engineering Royal Institute of Technology, Stockholm (2001).

  4. V. S. Ivanova, Fatigue Failure of Metals [in Russian], Metallurgizdat, Moscow (1963).

    Google Scholar 

  5. N. J. Hardman, “Elliptic elastic inclusion in an infinite elastic plate,” Quart. J. Mechan. Appl. Math., 7(2), 226 – 230 (1954).

    Article  Google Scholar 

  6. V. M. Ken’ko, and I. N. Stepankin, “Consideration of structural features of tool steels during manufacture of a matrix of cold-upsetting equipment,” Lit’e Metallurgiya, Coll. Sci. Work Bel. Nats. Tekh. Univ., No. 4, 110 – 116 (2004).

  7. L. S. Kremnev, “Features of tool material failure,” Metalloved. Term. Obrab. Met., No. 4, 17 – 22 (1994).

  8. L. S. Kremnev, “Critical stress intensity factor and fracture toughness of high-strength tool materials,” Metalloved. Term. Obrab. Met., No. 1, 30 – 35 (1996).

  9. V. Dal’ (ed.), Steel Behavior Under Applied Loads [Russian translation], Metallurgiya, Moscow (1983).

    Google Scholar 

  10. A. P. Gulyaev, “Brittle failure resistance,” Metalloved. Term. Obrab. Met., No. 2, 21 – 26 (1992).

  11. S. Marphy and J. Whiteman, “The kinetics M2C precipitation in tempered,” Metal Sci. J., 4, 58 – 62 (1970).

    Article  Google Scholar 

  12. S. E. Gurevich and L. D. Edidovich, Metal Fatigue and Fracture Toughness [in Russian], Nauka, Moscow (1974)

    Google Scholar 

  13. A. M. Barinov and P. I. Andriashvili, “Precritical crack propagation in brittle materials with monotonic loading, “ Fiz. Khim. Mekh. Mater., No. 6, 21 – 24 (1088).

  14. V. Z. Partnon and E. M. Morozov, Elastoplastic Failure Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. A. P. Gulyaev, “Strength,” Metalloved. Term. Obrab. Met., No. 7, 2 – 6 (1993).

  16. S. Kotsanda, Metal Fatigue Cracking [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  17. T. Ekobori, Solid Physics and Mechanics and Failure [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  18. V. M. Ken’ko, V. V. Pinchuk, and I. N. Stepankin, “Optimum technology for preparing cold-upsetting dies,” Kuzn.-Shtamp. Proizvod., No. 11, 22 – 24 (1998).

  19. Yu. M. Skrynchenko and L. A. Poznyak, Tool Steel Operating Capacity and Properties [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  20. Yu. A. Geller, Tool Steels: Handbook [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  21. G. N. Savin, Stress Distribution Around a Hole [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  22. I. Billingham, Upsetting and Other Forging Methods [Russian translation], Mashgiz, Moscow (1960).

    Google Scholar 

  23. I. N. Stepankin, E. P. Pozdnyakov, V. M. Ken’ko, I. A. Pankratov, and L. V. Stepankina, “Belarus Patent No. 8620 MPK (2009) G 01 N 3/00. Device for material contact fatigue and wear testing,” Afits. Byul., Nats. Tsentr Intelekt. Ulast., No. 3, 260 (2012), claim 23.11.2011.

  24. Ali Beheshti and M. M. Khonsari, “On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect,” Tribology Int., 44, 1620 – 1628 (2011).

    Article  Google Scholar 

  25. I. L. Khefets, “Thermodynamic treatment of a cold-upsettting and thread-rolling tool,” Kuzn.-Shtamp. Proizvod., No. 11, 37 – 38 (1983).

  26. A. T. Evtushenko, “Study of the effect of structure, heat treatment and properties of forging steel for cold resistance,” Polzunovskii Vestn., No. 1 – 2, 242 – 249 (1983).

  27. A. P. Gulyaev, “High-speed steel theory,” Metalloved. Term. Obrab. Met., No. 11, 27 – 32 (1998).

  28. I. Artinger, Too; Steel and Their Heat Treatment: Handbook [Russian translation], Metallurgiya, Moscow (1982).

    Google Scholar 

  29. A. P. Gulyaev, “Steel cold treatment,” Metalloved. Term. Obrab. Met., No. 11, 19 – 26 (1998).

  30. A. V. Makarov, Improvement of Iron Alloy Wear Resistance Due to Creating Metastable and Nanocrystalline Structures, Author’s Abstract of Candidate’s Thesis [in Russian], Chelyabinsk (2009).

  31. M. Yu. Semenov, I. N. Gavrilin, and M. Yu. Ryzhova, “Analysis of methods for gear wheel strengthening of heat-resistant materials based on a calculation method,” Metalloved. Term. Obrab. Met., No. 1, 42 – 46 (2014).

  32. B. Alfredsson, A study on Contact Fatigue Mechanisms, Author’s Abstract of Doctoral’s Thesis, Department of Solid Mechanics Royal Institute of Technology, Stockholm (2000).

  33. C. Longching, C. Qing, and S. Eryu, “Study on initiation and propagation angles of sub-surface cracks in GCr15 bearing steel under rolling contact,” Wear, 133, 205 – 218 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Stepankin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 50 – 58, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepankin, I.N. Contact Wear of Steels Kh12M and R6M5. Met Sci Heat Treat 59, 313–320 (2017). https://doi.org/10.1007/s11041-017-0149-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0149-2

Key words

Navigation