Skip to main content
Log in

Structure and Properties of High-Strength Aluminum Alloy 1933 Rolled Plates

  • Published:
Metal Science and Heat Treatment Aims and scope

Results are given for metallographic and x-ray diffraction analysis of the structure, degree of recrystallization, and preferred crystallographic orientations, and also mechanical and corrosion properties through the thickness of 100 mm thick rolled plates of high-strength aluminum alloy 1933, considered in this study as an alternative to forgings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. N. Kablov, “Strategic areas for development of materials and their processing technology in the period up to 2030,” Aviats. Mater. Tekhnol., No. S, 7 – 17 (2012).

  2. E. N. Kablov (ed.), Aviation Materials, Handbook in 13 Vol., Vol. 4, Book 1 [in Russian], VIAM, Moscow (2008).

  3. R. O. Vakhromov, E. A. Tkachenko, O. I. Popova, and T. V. Milevskaya, “Summary of experience of application and optimization of manufacturing technology for semifinished products of high-strength aluminum alloy 1933 for load-bearing structures of contemporary aviation technology,” Aviats. Mater. Tekhnol., No. 2, 34 – 39 (2014).

  4. E. N. Kablov, “Chemistry in aviation materials science,” Ross. Khim. Zh., LIV(1), 3 – 4 (2010).

  5. I. N. Fridlyander, Aluminum Wrought Structural Alloys [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  6. V. V. Antipov, O. G. Senatorova, E. A. Tkachenko, and R. O. Vakhromov, “Aluminum wrought alloys,” Aviats. Mater. Tekhnol., No. S, 167 – 182 (2012).

  7. L. F. Mondol’fo, Structure and Properties of Aluminum Alloys [Russian translation], Izd. Inostr. Lit., Moscow (1962).

    Google Scholar 

  8. E. N. Kablov, E. A. Tkachenko, V. V. Antipov, and R. O. Vakhromov, RF Patent 2443793, High-Strength alloy Based on Aluminum and Method for Preparing Objects from It [in Russian], Publ. 10.08.2010.

  9. V. V. Antipov, O. G. Senatorova, and E. A. Tkachenko, “Highstrength aluminum alloys,” Tsvetn. Metall., No. 9, 63 – 65 (2013).

  10. R. O. Vakhromov, V. V. Antipov, and E. A. Tkachenko, “Research and development of high-strength of Al – Zn – Mg – Cu alloys,” in: Proc. of ICAA-13, Pittsburg, USA (2012).

  11. I. N. Fridlyander, E. N. Kablov, O. E. Grushko, S. N. Borovskikh, and L. A. Ivanova, RF Patent 2237098, Alloy Based on Aluminum and Objects from It [in Russian], Publ. 09.27.2004.

  12. Hua Chen, Sam X. Gao, Paul A. Rometsch, et al., “Dissolution and melting of constituent particles in a DC-cast Al – Zn – Mg – Cu alloy 7150 during homogenization,” in: Proc. of ICAA-12, Yokohama, Japan (2010).

  13. Daokui Xu, Paul A. Rometsch, Hua Chen, et al., “Effect of solution treatment on microstructure and mechanical properties of thick plate aluminum alloy 7150,” in: Proc. of ICAA-12, Yokohama, Japan (2010).

  14. M. R. Clinch, R. Daval, S. J. Harris, et al., “A microstructural engineering-based approach to 7xxx series alloy optimization,” in: Proc. of ICAA-9, Brisbane, Australia (2004).

  15. Li Jun-peng, et al., “Microstructure evolution of 7050 aluminum alloy during hot deformation,” Trans. Nonferrous Met. Soc. China, 20, 189 – 194 (2010).

    Article  Google Scholar 

  16. O. V. Loshchinin, S. I. Pakhomkin, and A. S. Fokin, “Effect of heating rate during studies of phase transformation in aluminum alloys by the DSC method,” Aviats. Mater. Tekhnol., No. 2, 3 – 6 (2011).

  17. V. S. Erasov, N. O. Yakovlev, and G. A. Nuzhnyi, “Qualification testing and study of the strength of aviation materials,” Aviats. Mater. Tekhnol., No. S, 440 – 448 (2012).

  18. D. K. Ryabov and N. I. Kolobnev, “Change in mechanical properties alloy 1913 with two-stage artificial ageing,” Aviats. Mater. Tekhnol., No. 4, 3 – 7 (2013).

  19. V. G. Dvaydov, V. V. Zakharov, E. D. Zakharov, and I. I. Novikov, Isothermal Solid Solution Decomposition Diagrams in Aluminum Alloys: Handbook [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  20. O. A. Steyukov, I. N. Fridlyander, and N. V. Ruch’eva, “Features of dendrite liquation of titanium in alloys,” Metalloved. Term. Obrab. Met., No. 7, 55 – 57 (1983).

  21. O. A. Setyukov and I. N. Fridliander, “Peculiarities of Ti in dendritic segregation in aluminum alloys,” in: Proc. of ICAA-5, Grenoble, France (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Selivanov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 41 – 45, June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selivanov, A.A., Vakhromov, R.O., Setyukov, O.A. et al. Structure and Properties of High-Strength Aluminum Alloy 1933 Rolled Plates. Met Sci Heat Treat 58, 352–356 (2016). https://doi.org/10.1007/s11041-016-0016-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-0016-6

Key words

Navigation