Skip to main content
Log in

Structural Characterization of the Rolled and Annealed 7475 Aluminum Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum alloys have been extensively employed in industrial applications due, among other things, to low cost and small weight. The purpose of this work was to investigate the Vickers hardness, tensile strength (at different temperatures) and microstructure (X-Ray diffraction, scanning and transmission electron microscopy analysis) of the 7475-T7351 aluminum alloy (5.67%Zn, 2.38%Mg, 1.78%Cu and 0.28%Fe + Si) after being submitted to rolling (at room and cryogenic temperatures) and annealing treatments (at 200 and 300 °C/15 min). Based on the results, the condition that was just rolled and subsequently subjected to annealing heat treatments (200 and 300 °C) showed higher mechanical properties obtained at room temperature and hot (250 and 350 °C) tensile test than that were submitted to the intermediate annealing heat treatment between the rolling steps. This fact is possibly due to the intermediate heat treatment, which caused a thickening of the precipitates, and consequently a lower microstructural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Zhang, Y. Chen, and J. Hu, Recent Advances in the Development of Aerospace Materials, Prog. Aerosp. Sci., 2018, 97, p 22–34.

    Article  Google Scholar 

  2. A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent Advances in Ageing of 7XXX Series Aluminum Alloys: A Physical Metallurgy Perspective, J. Alloy. Compd., 2019, 781, p 945–983.

    Article  CAS  Google Scholar 

  3. L. Hadjadj, and R. Amira, The Effect of Cu Addition on the Precipitation and Redissolution in Al–Zn–Mg Alloy by the Differential Dilatometry, J. Alloy. Compd., 2009, 484, p 891–895.

    Article  CAS  Google Scholar 

  4. P.A. Rometsch, Y. Zhang, and S. Knight, Heat Treatment of 7XXX Series Aluminium Alloys—Some Recent Developments, Trans. Nonferrous Metals Soci. China, 2014, 24, p 2003–2017.

    Article  CAS  Google Scholar 

  5. A.M.B. Casanova, S.B. Diniz, C.S. Silva, T.G. Sousa, A.S. Silva, L.P.M. Brandão, and A.S. Paula, Avaliação da Homogeneidade Estrutural em Liga de Alumínio 7475–T7351 Submetida a Laminação Convencional e Assimétrica (Evalution Of The Structural Homogeneity In 7475–T7351 Aluminum Alloy Submitted To Conventional And Asymmetric Rolling), Tecnologia e Metalurgia, Materiais e Mineração, 2018, 15(3), p 202–206. ((in Portuguese))

    Article  Google Scholar 

  6. I. Sabirov, M.Y. Murashkin, and R. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng. A, 2013, 560, p 1–24.

    Article  CAS  Google Scholar 

  7. M.G. Vale, N. Medeiros, G.S. Fonseca, S.B. Diniz, A.S. Paula, and L.P.M. Brandão, On the Mechanical Behavior of an Al 7075 alloy Deformed by Asymmetrical and Conventional rolling, Matéria (Rio de Janeiro), 2019 https://doi.org/10.1590/s1517-707620190001.0625

    Article  Google Scholar 

  8. S.B. Diniz, E.A. Benatti, A.S. Paula, R.E. Bolmaro, L.C. da Silva, and B.G. Meirelles, Microstructural Evaluation of an Asymmetrically Rolled and Recrystallized 3105 Aluminum Alloy, J. Market. Res., 2016, 5(2), p 183–189.

    CAS  Google Scholar 

  9. H.J. Choi, J.H. Shin, and D.H. Bae, Grain Size Effect on the Strengthening Behavior of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71(15), p 1699–1705.

    Article  CAS  Google Scholar 

  10. V.V. Patel, V.J. Badheka, and A. Kumar, Effect of Velocity Index on Grain Size of Friction Stir Processed Al- Zn-Mg-Cu Alloy, Procedia Technol., 2016, 23, p 537–542.

    Article  Google Scholar 

  11. A. Chemin, D. Marques, L. Bisanha, A.J. Motheo, W.W. Bose Filho, and C.O.F. Ruchert, Influence of Al7Cu2Fe Intermetallic Particles on the Localized Corrosion of High Strength Aluminum Alloys, Mater. Des., 2014, 53, p 118–123.

    Article  CAS  Google Scholar 

  12. P. Ohnišťová, M. Píškaa, J. Dluhošb, J. Horníkovác, P. Šandera, and M. Petrenec, A Study of Crack Initiation Mechanism in the Aluminum Alloy 7475–T7351 when Tensile Loading, Procedia Struct. Integr., 2019, 23, p 469–474.

    Article  Google Scholar 

  13. H.X. Li, Q.L. Bai, Y. Li, Q. Du, L. Katgerman, J.S. Zhang, and L.Z. Zhuang, Mechanical Properties and Cold Cracking Evaluations of Four 7XXX Series Aluminum Alloys Using A Newly Developed Index, Mater. Sci. Eng. A, 2017, 698, p 230–237.

    Article  CAS  Google Scholar 

  14. T. Subroto, A. Miroux, D.G. Eskin, and L. Katgerman, Tensile Mechanical Properties, Constitutive Parameters and Fracture Characteristics of an As-cast AA7050 Alloy in the Near-Solidus Temperature Regime, Mater. Sci. Eng. A, 2017, 679, p 28–35.

    Article  CAS  Google Scholar 

  15. M. Kadlec, R. Ruzek, and L. Novakova, Mechanical Behaviour of AA 7475 Friction Stir Welds with the Kissing Bond Defect, Int. J. Fatigue, 2015, 74, p 7–19.

    Article  CAS  Google Scholar 

  16. R. Ramos, N. Ferreira, J.A.M. Ferreira, C. Capela, and A.C. Batista, Improvement in Fatigue Life of Al 7475–T7351 Alloy Specimens by Applying Ultrasonic and Microshot Peening, Int. J. Fatigue, 2016, 92, p 87–95.

    Article  CAS  Google Scholar 

  17. H.E. Coules, G.C.M. Horne, K.A. Venkata, and T. Pirling, The Effects of Residual Stress on Elastic-Plastic Fracture Propagation and Stability, Mater. Des., 2018, 143, p 131–140.

    Article  Google Scholar 

  18. N. Ferreira, J.S. Jesus, J.A.M. Ferreira, C. Capela, J.M. Costa, and A.C. Batista, Effect of Bead Characteristics on the Fatigue Life of Shot Peened Al 7475–T7351 Specimens, Int. J. Fatigue, 2020, 134, p 105521.

    Article  CAS  Google Scholar 

  19. P. Homola, R. Ružek, and J. Behal, Effect of Loading Spectrum Clipping and Truncation on Fatigue Crack Growth Behavior of 7475–T7351 Aluminum Alloy under Variable Amplitude Loading, Procedia Eng., 2015, 101, p 203–210.

    Article  CAS  Google Scholar 

  20. A. Chemin, D. Spinelli, W., Bose Filho, and C. Ruchert, Corrosion Fatigue Crack Growth of 7475–T7351 Aluminum Alloy under Flight Simulation Loading, Procedia Eng., 2015, 101, p 85–92.

    Article  CAS  Google Scholar 

  21. A.E.A. Chemin, F. Saconi, W.W. Bose Filho, D. Spinelli, and C.O.F.T. Ruchert, Effect of Saline Corrosion Environment on Fatigue Crack Growth of 7475–T7351 Aluminum Alloy Under TWIST Flight Loading, Eng. Fract. Mech., 2015, 141, p 274–290.

    Article  Google Scholar 

  22. Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang, Effects of Pre-Treatments on Aging Precipitates and Corrosion Resistance of a Creep-Aged Al–Zn–Mg–Cu Alloy, Mater. Des., 2015, 15, p 866–875.

    Article  Google Scholar 

  23. V. Kodetová, M. Vlach, H. Kudrnová, J. Málek, M. Cieslar, L. Bajtošová, T. Kekule, P. Harcuba, F. Lukáč, and M. Leibner, Phase Transformations in Commercial Cold-Rolled Al–Zn–Mg–Cu Alloys with Sc and Zr Addition, J. Therm. Anal. Calorim., 2020, 145, p 2991–3002.

    Article  Google Scholar 

  24. M. Vlach, V. Kodetova, J. Cizek, M. Leibner, T. Kekule, F. Lukáč, M. Cieslar, L. Bajtošová, H. Kudrnová, V. Sima, S. Zikmund, E. Cernoskova, P. Kutalek, V.D. Neubert, and V. Neubert, Role of Small Addition of Sc and Zr in Clustering and Precipitation Phenomena Induced in AA7075, Metals, 2021, 11(8), p 1–21.

    Google Scholar 

  25. X.B. Li, G.M. Jiang, J.P. Di, Y. Yang, and C.L. Wang, Effect of Cryogenic Rolling on the Microstructural Evolution and Mechanical Properties of Pure Copper Sheet, Mater. Sci. Eng. A, 2020, 772, p 138811.

    Article  CAS  Google Scholar 

  26. M. Vlach, J. Čížek, V. Kodetová, T. Kekule, F. Lukáč, M. Cieslar, H. Kudrnová, L. Bajtošová, M. Leibner, P. Harcuba, J. Málek, and V. Neubert, Annealing Effects In Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys, Met. Mater. Int., 2019, 27, p 995–1004.

    Article  Google Scholar 

  27. P. Leo, E. Cerri, H.J. Mcqueen, and S. Chiozzi, Microstructure and Mechanical Characterization of an Al-Zn-Mg Alloy After Various Heat Treatments and Room Temperature Deformation, Mater. Sci. Forum, 2009, 604–605, p 67–76.

    Google Scholar 

  28. A. Yamamoto, K. Minami, U. Ishihara, and H. Tsubakino, Calorimetric and Resistivity Study of Formation and Redissolution of Precipitates in 7050 Aluminium Alloy, Mater. Trans., 1998, 39(1), p 69–74.

    Article  CAS  Google Scholar 

  29. G.E. Totten, D.S. Mackenzie, Handbook of Aluminum: Physical metallurgy and Processes, 1st ed. Marcel Dekker, New York, 2003.

    Book  Google Scholar 

  30. Y.G. Liao, X.Q. Han, M.X. Zeng, and M. Jin, Influence of Cu on Microstructure and Tensile Properties of 7XXX Series Aluminum Alloy, Mater. Des., 2015, 66, p 581–586.

    Article  CAS  Google Scholar 

  31. S.H. Souza, and A.F. Padilha, (2017) in Recozimento da Liga de Alumínio AA 7075 Após Laminação a Frio (Annealing of Aluminum Alloy AA 7075 After Cold Rolling), 02–06 Oct 2017 (Brazil). In: Proceedings of the 72º Congresso Anual da ABM ABMWeek 2017, pp 172–182

  32. J.T. Jiang, Q.J. Tang, K. Zhang, S.J. Yuan, and L. Zhen, Non-Isothermal Ageing of an Al-8Zn-2Mg-2Cu Alloy for Enhanced Properties, J. Mater. Process. Technol., 2016, 227(1), p 110–116.

    Article  CAS  Google Scholar 

  33. X. Li, B. Xiong, Y. Zhang, B. Zhu, H. Liu, and Z. Li, The Effect of RRA on the Microstructure and Properties of a Novel Al-Zn-Mg-Cu-Zr, Int. J. Mod. Phys. B, 2009, 23, p 900–905.

    Article  CAS  Google Scholar 

  34. H. Aboulfadl, J. Deges, P. Choi, and D. Raabe, Dynamic Strain Aging Studied at the Atomic Scale, Acta Mater., 2015, 86, p 34–42.

    Article  CAS  Google Scholar 

  35. P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663.

    Article  Google Scholar 

  36. P.G. Mccormick, Theory of Flow Localisation Due to Dynamic Strain Ageing, Acta Metall., 1988, 36(12), p 3061–3067.

    Article  CAS  Google Scholar 

  37. T.M. Taheri, T.M. Maccagno, and J.J. Jonas, Dynamic Strain Aging and the Wire Drawing of Low Carbon Steel Rods, Iron Steel Inst. Japan Int., 1995, 35(12), p 1532–1540.

    Article  CAS  Google Scholar 

  38. Y. Zhang, J.P. Liu, S. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, and Y.L. Wang, Serration and Noise Behaviors in Materials, Prog. Mater .Sci., 2017, 90, p 358–460.

    Article  CAS  Google Scholar 

  39. L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, and D.W. Yuan, The Possibilities to Lower the Stacking Fault Energies of Aluminum Materials Investigated by First-Principles Energy Calculations, Comput. Mater. Sci., 2015, 108, p 136–146.

    Article  CAS  Google Scholar 

  40. W. Xiao, B. Wang, Y. Wu, and X. Yang, Constitutive Modeling of Flow Behavior and Microstructure Evolution of AA7075 in Hot Tensile Deformation, Mater. Sci. Eng. A, 2018, 712, p 704–713.

    Article  CAS  Google Scholar 

  41. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys. Taylor and Francis Group, 3rd edn. (CRC Press, 2009) p. 538

Download references

Acknowledgments

The authors thank CAPES for a PhD scholarship (2014-2017/DINIZ, S.B.); the National Synchrotron Light Laboratory (LNLS), for help in the H_TT measurements; Universidade Federal Fluminense (UFF), for the RR_TT measurements; Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ—Maracanã) for the use of the Instron Wolpert durometer; Universidade Federal do Rio de Janeiro (UFRJ/COPPE), for preparing the samples for TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulo Brinco Diniz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, S.B., dos Santos Paula, A. & Brandão, L.P.M. Structural Characterization of the Rolled and Annealed 7475 Aluminum Alloy. J. of Materi Eng and Perform 32, 718–727 (2023). https://doi.org/10.1007/s11665-022-07120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07120-9

Keywords

Navigation