Skip to main content
Log in

Nanocomposite Antifriction Coatings for Innovative Tribotechnical Systems

  • Published:
Metal Science and Heat Treatment Aims and scope

Different approaches to formation of hard multicomponent coatings with improved tribological characteristics in a wide temperature range are considered. It is shown that deposition of a thin surface layer or introduction of additional structural components into nanocomposite coatings, which play the role of a solid lubricant, lowers substantially the friction factor and increases the wear resistance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. L. Conley, D. Packard, and W. Purdy, Space Vehicle Mechanisms, Wiley (1998), 794 p.

  2. E. A. Levashov and D. V. Shtanskii, “Multifunctional nanostructured films,” Usp. Khimii, 76, 501 (2007).

    Google Scholar 

  3. A. A. Voevodin and J. S. Zabinski, “Supertough wear-resistant coatings with ‘chameleon’ surface adaptation,” Thin Solid Films, 370(1 – 2), 223 – 231 (2000).

    Article  Google Scholar 

  4. K. Kutschej, P. H. Mayrhofer, M. Kathrein, et al., “A new low-friction concept for Ti 1-x Al x N based coatings in high-temperature applications,” Surf. Coat. Technol., 188 – 189, 358 – 363 (2004).

    Article  Google Scholar 

  5. D. V. Shtanskii, C. A. Kulinich, E. A. Levashov, and J. J. Moore, “Special features of structure and physicomechanical properties of nanostructured thin films,” Fiz. Tverd. Tela, 45, 1122 – 1129 (2003).

    Google Scholar 

  6. E. A. Levashov, D. V. Shtansky, F. V. Kiryukhantsev-Korneev, et al., “Multifunctional nanostructured coatings. Formation, structure and provision of unified measurement of mechanical and tribological properties,” Deform. Razrush. Mater., 11, 19 – 36 (2009).

    Google Scholar 

  7. M. Woydt, A. Skopp, I. Dorfel, and K. Witke, “Wear engineering oxides/anti-wear oxides,” Wear, 218, 84 – 95 (1998).

    Article  Google Scholar 

  8. G. Gassner, P. H. Mayrhofer, K. Kutschej, et al., “Magneli phase formation of PVD Mo – N and W – N coatings,” Surf. Coat. Technol., 201, 3335 – 3341 (2006).

    Article  Google Scholar 

  9. D. V. Shtansky, T. A. Lobova, V. Yu. Fominski, et al., “Structure and wear behavior of WSe x , WSe x /TiN, WSe x /TiCN and WSe x /TiSiN coatings,” Surf. Coat. Technol., 182, 328 – 336 (2004).

    Article  Google Scholar 

  10. J. Pouset and J. C. Bernede, “MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films,” Rev. de Physique Appl., 25, 807 – 815 (1990).

    Article  Google Scholar 

  11. T. Polcar,M. Evaristo, R. Colac, et al., “Nanoscale triboactivity: the response of Mo – Se – C coatings to sliding,” Acta Mater., 56, 5101 – 5111 (2008).

    Article  Google Scholar 

  12. W. Gulbinski and T. Suszko, “Thin films of Mo2N/g nanocomposite— the structure, mechanical and tribological properties,” Surf. Coat. Technol., 201, 1469 – 1476 (2006).

    Article  Google Scholar 

  13. A. A, Voevodin, C. Muratore, and S. M. Aouadi, “Hard coatings with high temperature adaptive lubrication and contact thermal management: review,” Surf. Coat. Technol., 257, 247 – 265 (2014).

    Article  Google Scholar 

  14. W. Gulbinski and T. Suszko, “Thin films of MoO3 – Ag2O binary oxides — the high temperature lubricants,” Wear, 261, 867 – 873 (2006).

    Article  Google Scholar 

  15. M. D. Abad, J. C. Sanchez-Lopez, M. Brizuela, et al., “Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings,” Thin Solid Films, 518, 5546 – 5552 (2010).

    Article  Google Scholar 

  16. C. C. Baker, J. J. Hu, and A. A. Voevodin, “Preparation of Al2O3 /DLC/Au/MoS2 chameleon coatings for space and ambient environments,” Surf. Coat. Technol., 201(7), 4224 – 4229 (2006).

    Article  Google Scholar 

  17. D. Jianxin, C. Tongkun, D. Zeliang, et al., “Tribological behaviors of hot-pressed Al2O3 /TiC ceramic composites with the additions of CaF2 solid lubricants,” J. Europ. Ceram. Soc., 26, 1327 – 1323 (2006).

    Article  Google Scholar 

  18. J. H. Ouyang, S. Sasaki, and K. Umeda, “Low-pressure plasma- sprayed ZrO2 – CaF2 composite coating for high-temperature tribological applications,” Surf. Coat. Technol., 137, 21 – 30 (2001).

    Article  Google Scholar 

  19. D. Jianxin and C. Tongkun, “Self-lubricating mechanisms via the in situ formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel,” Int. J. Refr. Metals Hard Mater., 25, 189 – 197 (2007).

    Article  Google Scholar 

Download references

The work has been performed with financial support of the Russian Research Foundation (Agreement No. 14-19-00273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Shtanskii.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 77 – 83, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtanskii, D.V., Bondarev, A.V., Kiryukhantsev-Korneev, F.V. et al. Nanocomposite Antifriction Coatings for Innovative Tribotechnical Systems. Met Sci Heat Treat 57, 443–448 (2015). https://doi.org/10.1007/s11041-015-9902-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9902-6

Key words

Navigation