Skip to main content
Log in

Variation of the microstructure of ingots of DC cast alloy 7050 during homogenization

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of ingots of aluminum alloy 7050 after casting and homogenization is studied by the methods of differential scanning calorimetry, light and scanning electron microscopy, and x-ray diffractometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong Ha, Han Yi, and Chen Qi, “Morphology and phase constituent of secondary phase in as-cast microstructure of 7150 aluminum alloy,” Special Casting Nonferrous Alloys, 28(2), 106–108 (2008).

    CAS  Google Scholar 

  2. Zhong Zhi-guo, Zuo Xiu-rong, and Weng Yong-gang, “The application situation and the study development of the wrought aluminum alloy’s homogenization,” Light Alloy Fabr. Technol., 34(1), 10–13 (2006).

    Google Scholar 

  3. Fenghua Gao, Niankui Li, and Fuguan Cong, “Constituent and homogenizing treatment of semicontinuous casting ingot of 7050 aluminum alloy,” Chin. J. Rare Met., 32(3), 274–278 (2008).

    CAS  Google Scholar 

  4. X. G. Fan, D. M. Jiang, Q. Meng, et al., “The microstructural evolution of an AlZnMgCu alloy during homogenization,” J. Mater. Lett., 60, 1475 (2006).

    Article  CAS  Google Scholar 

  5. D. C. DarWard and D. J. Beernsen, “Grain structure and quenchrate effects on strength and toughness of AA7050 Al – Zn –Mg – Cu – Zr alloy,” J. Metall. Trans., 26(9), 2481–2484 (2003).

    Article  Google Scholar 

  6. Wang Chen, Zhou Jing, and Yang Zhi-feng, “Change of the microstructure of 7050 aluminum alloy ingot during homogenization annealing,” Light Alloy Fabr. Technol., 35(1), 23–24, 52 (2007).

    MATH  CAS  Google Scholar 

  7. The Compiling Group of Metallographic Atlas. Wrought Aluminum Alloy, Metallurgical Industry Press, Beijing (1975).

  8. G. T. Hahn and A. R. Rosenfield, “Metallurgical factors affecting fracture toughness of aluminum alloys,” J. Metall. Trans. A, 6A, 653 (1975).

    Article  CAS  ADS  Google Scholar 

  9. M. Nakai and T. Eton, “Effect of the morphology of constituents and dispersoids on fracture toughness and failure crack propagation rate in 2024 aluminum alloys,” J. Jpn. Inst. Light Alloys, 45, 677 (1995).

    CAS  Google Scholar 

  10. J. D. Robson, “Microstructural evolution in aluminum alloy 7050 during processing,” Mater. Sci. Eng. A, 382, 112–121 (2004).

    Article  Google Scholar 

  11. Wang Zhi-bo, Liu Chang-ming, Han Zhao-tang, “Structure evolution characteristics of wrought aluminum alloy 7050 in the process of semi-solid forging and its mechanical properties,” Aluminum Fabr., 1, 16–20 (2008).

    CAS  Google Scholar 

  12. Sun Feng-xian and Gao Feng-hua, “Homogenization treatment of ingot of Al – 6.1Zn – 2.6Mg – 1.6Cu higher strength aluminum alloy,” Light Alloy Fabr. Technol., 37(1), 16–19 (2007).

    MathSciNet  Google Scholar 

  13. C. Mondal and A. K. Mukhopashyay, “On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases in as-cast and annealed 7055 aluminum alloy,” J. Mater Sci. Eng. A, 391, 367–376 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 40–43, April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Feng, Y., Li, T. et al. Variation of the microstructure of ingots of DC cast alloy 7050 during homogenization. Met Sci Heat Treat 52, 179–182 (2010). https://doi.org/10.1007/s11041-010-9251-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-010-9251-4

Keywords

Navigation