Skip to main content
Log in

Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation

  • Diffusion. Severe Plastic Deformation
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Farber, “Contribution of diffusion processes to structure formation under severe cold plastic deformation of metals,” Metalloved. Term. Obrab. Met., No. 8, 3–9 (2002).

  2. M. A. Shtremel’, “On participation of diffusion in mechanical alloying processes,” Metalloved. Term. Obrab. Met., No. 8, 10–12 (2002).

  3. Yu. A. Skakov, “High-energy cold plastic deformation, diffusion, and mechanochemical synthesis,” Metalloved. Term. Obrab. Met., No. 4, 3–12 (2004).

  4. M. A. Shtremel’, “Where is diffusion directed to?” Metalloved. Term. Obrab. Met., No. 4, 12–13 (2004).

    Google Scholar 

  5. Yu. A. Skakov, “Formation and stability of metastable phases in mechanochemical synthesis,” Metalloved. Term. Obrab. Met., No. 7, 45–54 (2005).

  6. A. Ye. Yermakov, V. L. Gapontzev, V. V. Kondratyev, et al., “Phase instability of nanocrystalline driven alloys,” Mater. Sci. Forum, 343–346, Part 2, 577–584 (2000).

    Google Scholar 

  7. C. E. Rodriquez Torres, F. N. Sanches, and L. A. Mendoza Zeilis, “Decomposition of Fe2B by mechanical grinding,” Phys. Rev. B, 51(18), 12142–12148 (1995).

    Article  Google Scholar 

  8. Yu. S. Necganev, S. A. Vladimitrov, N. A. Ol’shevskii, et al., “The effect of high-speed deformation on diffusion mass transfer in metals,” Fiz. Met. Metalloved., 60(3), 542–549 (1985).

    Google Scholar 

  9. O. A. Dorofeev, E. P. Yelsukov, A. L. Ulyanov, and G. N. Konygin, “Termodynamic Simulation of Mechanically Alloyed Solid Solution Formation in Fe-Sn System,” Mater. Sci. Forum, 343–346, 585–590 (2000).

    Google Scholar 

  10. V. L. Gapontsev, Diffusion and Structurally Heterogeneous States in Alloys with Localized Vacancy Sources and Runoffs, Author’s Abstract of Doctorate’s Thesis [in Russian], Ekaterinburg (2005).

  11. S. S. Zaichenko and A. M. Glezer, “Disclination mechanism of plastic deformation of nanocrystalline materials,” Fiz. Tverd. Tela, 39(11), 2023–2028 (1997).

    CAS  Google Scholar 

  12. V. L. Gapontsev and V. V. Kondrat’ev, Diffusion phase transformations in nanocrystalline alloys under severe plastic deformation, Dokl. Ross. Akad. Nauk, 385(5), 608–611 (2002).

    Google Scholar 

  13. I. M. Livshits, “On the theory of diffusion-viscous flows of polycrystalline bodies,” Zh. Eksp. Teor. Fiz., 44(4), 1349–1367 (1963).

    Google Scholar 

  14. V. I. Vladimirov and F. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  15. V. V. Rybin, Severe Plastic Deformation and Failure of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  16. A. V. Nazarov and K. L. Gurov, “Kinetic theory of mutual diffusion in a binary system. The effect of concentration dependence of self-diffusion coefficients on mutual diffusion process,” Fiz. Met. Metalloved., 38(3), 486–492 (1974).

    Google Scholar 

  17. B. I. Smirnov, “Generation of vacancies and variations in density of alkali-galloid crystals under plastic deformation,” Fiz. Tverd. Tela, 33(9), 2513–2526 (1991).

    CAS  Google Scholar 

  18. J. S. Vertrano, E. P. Simonen, and S. M. Bruemmer, “Evidence for vacancies at sliding grain boundaries during superplastic deformation,” Acta Mater., 47(15), 4125–4129 (1999).

    Article  Google Scholar 

  19. V. L. Gapontsev, “Mechanical alloying of metals with a big difference of atomic radii,” Electr. J. “Issledovano v Rossii”, No. 177, 1826–1836 (2005).

  20. G. A. Dorofeyev, G. N. Konygin, E. P. Elsukov, et al., “Mössbauer studies of solid-phase reaction kinetics in Fe68Sn32 system on nuclei 57Fe and 119Sn under mechanical alloying,” Izv. Akad. Nauk, Phys. Ser., 63(7), 141–146 (1999).

    Google Scholar 

  21. A. V. Dobromyslov, R. V. Churbaev, V. A. El’kin, and T. L. Trenogina, “Mechanical alloying of titanium-nickel and titanium-copper systems under high pressure,” in: Structure and properties of nanocrystalline materials, Coll. Works [in Russian], UrO RAN, Ekaterinburg (1999), pp. 63–76.

    Google Scholar 

  22. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, “Cyclic crystalline-amorphous transformations of mechanically alloyed Co75Ti25,” Appl. Phys. Lett., 70(13), 1679–1681 (1997).

    Article  Google Scholar 

  23. V. M. Koloskov, A. I. Deryagin, N. F. Vildanova, and V. L. Gapontsev, “Concentration and structural transformations in austenite chrome-nickel iron-based alloys under severe plastic deformation,” Fiz. Mezomekhan., 9(5), 95–107 (2006).

    Google Scholar 

  24. V. L. Gapontsev, “Induced spinodal decay,” Electr. J. “Issledovano v Rossii”, No. 178, 1837–1847 (2005).

  25. V. L. Gapontsev, I. K. Razumov, and V. V. Kondrat’ev, “Physicochemical transformation induced by vacancy flows in severe plastic deformation of nanostructural alloys,” in: Dep. in VINITI, No. 1380-V2002, dd. 23.07.2002.

  26. I. K. Razymov, V. L. Gapontsev, Yu. N. Gornostyrev, et al., “Theory of diffusion phase transformations in nanocrystalline alloys in severe plastic deformation. II. Stratification of non-ideal solid solutions,” Fiz. Met. Metalloved., 96(4), 5–15 (2003).

    Google Scholar 

  27. I. K. Razmov, V. L. Gapontsev, Yu. N. Gornostaev, et al., “Theory of diffusion phase transformations in nanocrystalline alloys in severe plastic deformation. III. Alloys with limited solubility,” Fiz. Met. Metalloved., 99(4), 1–12 (2005).

    Google Scholar 

  28. N. Wanderka, U. Czubayko, V. Naundorf, et al., “Characterization of nanoscaled heterogeneities in mechanically alloyed and compacted Cu-Fe,” Ultramicroscopy, 89, 189–194(2001).

    Article  CAS  Google Scholar 

  29. U. Czubayko, N. Wanderka, V. Naundorf, et al., “Three-dimensional atom probing of supersaturated mechanically alloyed Cu-20 at.% Co,” Mater. Sci. Eng., A327, 54–58 (2002).

    CAS  Google Scholar 

  30. B. F. Costa, G. Le Ca, and R. B. Luyssaert, “Mössbauer studies of phase separation in nanocrystalline Fe0.55−x Cr0.45Snx alloys preparred by mechanical alloying,” J. Alloys Compounds, 350, 36–46 (2003).

    Article  CAS  Google Scholar 

  31. I. S. Grigor’ev and E. Z. Meilikhov (eds.), Physical Values, A Reference Book [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  32. A. N. Orlov and Yu. V. Trushin, Energy of Point Defects in Metals [in Russian], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  33. P. Pochet, P. Bellon, L. Boulanger, et al., “Phase Transformation under ball milling,” Mater. Sci. Forum, 269–272, 655–664 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 3–15, November, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gapontsev, V.L., Koloskov, V.M. Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation. Met Sci Heat Treat 49, 503–513 (2007). https://doi.org/10.1007/s11041-007-0093-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-007-0093-7

Keywords

Navigation