Skip to main content
Log in

Fatigue resistance of titanium and iron alloys with submicrocrystalline and nanocrystalline structure. A review

  • Strength
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Regular features of cyclic hardening-softening and fatigue fracture of submicrocrystalline and nanocrystalline alloys based on titanium and iron are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, “Creation of nanostructured metals and alloys with unique properties using severe plastic deformation,” Ross. Nanotekhnol., 1(1–2), 208–216 (2006).

    Google Scholar 

  2. V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa, “Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing,” Mater. Sci. Eng., A300, 171–182 (2001).

    CAS  Google Scholar 

  3. A. Vinogradov and S. Hashimoto, “Multiscale phenomena in fatigue of ultra-fine grain materials — an overview,” Mater. Trans., 42(1), 74–84 (2001).

    Article  CAS  Google Scholar 

  4. A. Washikita, K. Kitagawa, V. I. Kopylov, and A. Vinogradov, “Tensile and fatigue properties of Al-Mg-Sc-Zr alloy fine-grained by equal-channel angular pressing,” in: Proc. Symp. “Ultrafine Grained Materials II,” A Publication of the Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2002), pp. 341–350.

    Google Scholar 

  5. A. Vinogradov, Y. Suzuki, V. Patlan, K. Kitagawa, and V. I. Kopylov, “Structure, properties and thermal stability of ultra-fine grained Cu-Cr-Zr alloy,” in: Proc. Symp. “Ultrafine Grained Materials II,” A Publication of the Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2002), pp. 351–360.

    Google Scholar 

  6. T. Yamasaki, H. Miyamoto, T. Mitaki, A. Vinogradov, and S. Hashimoto, “Corrosion fatigue of ultra-fine grain copper fabricated by severe plastic deformation,” in: Proc. Symp. “Ultrafine Grained Materials II,” A Publication of the Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2002), pp. 361–370.

    Google Scholar 

  7. A. Vinogradov, V. Patlan, Y. Suzuki, et al., “Structure and properties of ultra-fine grain Cu-Cr-Zn alloy produced by equal-channel angular pressing,” Acta Mater., 50, 1639–1651 (2002).

    Article  CAS  Google Scholar 

  8. A. Vinogradov, V. Patlan, S. Hashimoto, et al., “Acoustic emission during cyclic deformation of ultrafine-grain copper processed by severe plastic deformation,” Philos. Mag. A, 82(2), 317–335 (2002).

    CAS  Google Scholar 

  9. K, S. Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., 51, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  10. N. P. Lyakishev and M. I. Alymov, “Nanomaterials for structural purposes,” Ross. Nanotekhnol., 1(1–2), 71–81 (2006).

    Google Scholar 

  11. E. Thiele, R. Klemm, L. Hollang, et al., “An approach to cyclic plasticity and deformation-induced structure changes of electrodeposited nickel,” Mater. Sci. Eng., A390, 42–51 (2005).

    CAS  Google Scholar 

  12. V. P. Alekhin, “A novel process for fabricating nanocrystalline materials,” Deform. Razrush. Mater., No. 6, 35–38 (2005).

  13. V. E. Panin and A. V. Panin, “Scale levels of plastic fracture strain in nanostructured materialls,” Nanotekhnika, No. 3, 28–42 (2005).

  14. Y. Tokada, M. Umemoto, Y. Watanabe, et al., “Formation of nanocrystalline stricture by shot peening,” in: Nanomaterials by Severe Plastic Deformation (NanoSPD3), Proc. 3rd Int. Conf. on Nanomaterials by Severe Plastic Deformation, Japan, 2005, Trans. Tech. Publ., Switzerland (2006), pp. 669–674.

    Google Scholar 

  15. H. Mughrabi, “On the grain-size dependence of metal fatigue: outlook on the fatigue of ultrafine-grained metals,” in: Investigations and Applications of Severe Plastic Deformation (NA TO Science Series), Kluwer Academic Publishers, Dordrecht-Boston-London (2000), pp. 241–253.

    Google Scholar 

  16. T. Hanlon, E. D. Tabachnikova, and S. Surech, Int. J. Fatigue, 27(10–12), 1147–1158 (2005).

    Article  CAS  Google Scholar 

  17. A. Yu. Vinogradov and S. Hashimoto, “Fatigue of ultrafine-grain materials fabricated by equal-channel angular pressing,” Metally, No. 1, 51–62 (2004).

  18. H. Mughrabi and H. W. Hoppel, “Cyclic deformation and fatigue properties of ultrafine grain size materials: current status and some criteria for improvement of the fatigue resistance,” in: Structure and Mechanical Properties of Nanophase Materials — Theory and Computer Simulation vs. Experiment, Materials Research Society Symposium Proceedings, Materials Research Society, Vol. 634 (2000), pp. B2.1.1–B2.1.12.

    Google Scholar 

  19. A. Yu. Vinogradov and S. R. Agnew, “Nanocrystalline materials: fatigue,” in: Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York (2004), pp. 2269–2288.

    Google Scholar 

  20. V. F. Terent’ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  21. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Mater., 48, 1–29 (2000).

    Article  CAS  Google Scholar 

  22. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progr. Mater. Sci., 45, 103 (2000).

    Article  CAS  Google Scholar 

  23. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation [in Russian], Logos, Moscow (2000).

    Google Scholar 

  24. O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., “Deformation behavior and fracture under cyclic loading of titanium alloys subjected to equal-channel angular pressing,” in: Phyz. Nanomekh. (Special Issue) [in Russian], Part 2 (2004), pp. 111–114.

  25. O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., “Evolution of structure and mechanical properties of nanostructured titanium subjected to thermomechanical treatment,” Materialovedenie, No. 8, 25–30 (2003).

  26. W.-J. Kim, C.-Y. Hyun, and H.-K. Kim, “Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation,” Scr. Mater., 54(10), 1745–1750 (2006).

    Article  CAS  Google Scholar 

  27. A. Vinogradov, V. V. Stolyarov, S. Hashimoto, et al., “Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation,” Mater. Sci. Eng., A318, 163–173 (2001).

    CAS  Google Scholar 

  28. N. G. Turner and W. T. Roberts, Trans. AIME, 242, 1223 (1968).

    CAS  Google Scholar 

  29. S. Zherebtsov, G. Salishchev, R. Galeyev, et al., “Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation,” Mater. Trans., 46(9), 2020–2025 (2005).

    Article  CAS  Google Scholar 

  30. S. V. Zherebtsov, G. A. Salishchev, and R. M. Galleev, “Mechanical properties of submicrocrystalline titanium alloy VT6,” in: Structure and Properties of Nanocrystalline Materials, Coll. Works [in Russian], UrO RAN, Ekaterinburg (1999), pp. 195–203.

    Google Scholar 

  31. M. G. Chapetti, H. Miyata, T. Tagawa, et al., “Fatigue strength of ultrafine-grained steels,” Mater. Sci. Eng. A, 381(1–2), 15 Sept., 331–336 (2004).

    Google Scholar 

  32. A. Vinogradov, S. Hashimoto, and V. J. Kopylov, “Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy,” Mater. Sci. Eng. A, 355(1–2), 25 Aug., 277–285 (2003).

    Google Scholar 

  33. H. K. Kim, M. I. Choi, C. S. Chung, et al., “Fatigue properties of ultrafine grained low carbon steel produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 340(1–2), 15 Jan., 243–250 (2003).

    Google Scholar 

  34. C. Masuda, “Effect of grain size and nano-particle on fatigue properties of α-iron,” Zaiken-Annu. Rep. Kagami Mem. Lab. Mater. Sci. Waseda Univ., No. 13, 44 (2005).

  35. T. Sawai, S. Matsuoka, and K. Tsuzaki, “Low-and high-cycle fatigue properties of ultrafine-grained low carbon steels,” J. Iron Steel Inst. Jpn., 89(6), 726–733 (2003).

    CAS  Google Scholar 

  36. A. Di Schino and J. M. Kenny, “Grain size dependence of the fatigue behavior of an ultrafine-grained AISI 304 stainless steel,” Mater. Lett., 57(21), 3182–3185 (2003).

    Article  Google Scholar 

  37. H. Kimura, Y. Akiniwa, K. Tanaka, et al., “Fatigue crack initiation behavior in ultrafine-grained steel observed by AFM and EBSP,” JSME Int. J., Ser. A, 47(3), 331–340 (2004).

    Article  Google Scholar 

  38. I. Kh. Bitkulov, A. M. Burkhanov, E. A. Kazantsev, et al., “Effect of severe plastic deformation on the properties of Fe-36% Ni Invar alloy,” Fiz. Met. Metalloved., 102(1), 99–104 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 21–28, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terent’ev, V.F. Fatigue resistance of titanium and iron alloys with submicrocrystalline and nanocrystalline structure. A review. Met Sci Heat Treat 49, 476–483 (2007). https://doi.org/10.1007/s11041-007-0089-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-007-0089-3

Keywords

Navigation