Skip to main content
Log in

Discrete, Continuous and Asymptotic for a Modified Singularly Gaussian Unitary Ensemble and the Smallest Eigenvalue of Its Large Hankel Matrices

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

This paper focuses on the characteristics of the Hankel determinant generated by a modified singularly Gaussian weight. The weight function is defined as:

$$\begin{aligned} w(z;t)=|z|^{\alpha }\textrm{e}^{-\frac{1}{z^2}-t\left( z^2-\frac{1}{z^2}\right) }, ~z\in {\mathbb {R}}, \end{aligned}$$

where \(\alpha >1\) and \(t\in (0,1)\) are parameters. Using ladder operator techniques, we derive a series of difference formulas for the auxiliary quantities and recurrence coefficients. We present the difference equations for the recurrence coefficients and the logarithmic derivative of the Hankel determinant. We then use the “t-dependence" to obtain the differential identities satisfied by the auxiliary quantities and the logarithmic derivative of the Hankel determinant. To obtain the large n asymptotic expressions of the recurrence coefficients, we use the Coulomb fluid method together with the related difference equations, which depend on n either being odd or even. We also obtain the reduction forms of the second-order differential equations satisfied by the orthogonal polynomials generated by this weight. Two special cases coincide with the bi-confluent Heun equation and the double confluent Heun equation, respectively. Finally, we calculate the asymptotic behavior of the smallest eigenvalue of large Hankel matrices generated by this weight. Our result not only covers the classical result of Szegö (Trans Am Math Soc 40:450–461, 1936) but also determines our next research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Basor, E.L., Chen, Y., Ehrhardt, T.: Painlevé V and time-dependent Jacobi polynomials. J. Phys. A: Math. Theor. 43, 015204 (2010)

    Article  ADS  Google Scholar 

  2. Bonan, S., Clark, D.S.: Estimates of the orthogonal polynomials with weight \(exp(-x^m)\), \(m\) an even positive integer. J. Approx. Theory 46, 408–410 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bonan, S., Nevai, P.: Orthogonal polynomials and their derivatives I. J. Approx. Theory 40, 134–147 (1984)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Chen, Y.: Singular linear statistics of the Laguerre unitary ensemble and Painlevé III: Double scaling analysis. J. Math. Phys. 56, 063506 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, Y., Dai, D.: Painlevé V and a Pollaczek–Jacobi type orthogonal polynomials. J. Approx. Theory 162, 2149–2167 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Ismail, M.E.H.: Thermodynamic relations of the Hermitian matrix ensembles. J. Phys. A: Math. Gen. 30, 6633–6654 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, Y., Ismail, M.E.H.: Jacobi polynomials from compatibility conditions. Proc. Am. Math. Soc. 133, 465–472 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Its, A.: Painlevé III and a singular linear statistics in Hermitian random matrix ensembles I. J. Approx. Theory 162, 270–297 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Lawrence, N.: On the linear statistics of Hermitian random matrices. J. Phys. A: Math. Gen. 31, 1141–1152 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, Y., Lawrence, N.: Small eigenvalues of large Hankel matrices. J. Phys. A: Math. Gen. 32, 7305–7315 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, Y., Lubinsky, D.S.: Smallest eigenvalues of Hankel matrices for exponential weights. J. Math. Anal. Appl. 293, 476–495 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y., Mckay, M.R.: Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems. IEEE Trans. Inform. Theory 58, 4594–4634 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y., Filipuk, G., Zhan, L.: Orthogonal polynomials, asymptotics and Heun equation. J. Math. Phys. 60, 113501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Clarkson, P.A., Jordaan, K.: The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation. Constr. Approx. 39, 223–254 (2014)

    Article  MathSciNet  Google Scholar 

  15. Clarkson, P.A., Jordaan, K., Kelil, A.: A generalized Freud weight. Stud. Appl. Math. 136, 288–320 (2016)

    Article  MathSciNet  Google Scholar 

  16. Dai, D., Zhang, L.: Painlevé VI and Hankel determinants for the generalized Jacobi weight. J. Phys. A: Math. Theor. 43, 055207 (2010)

    Article  ADS  Google Scholar 

  17. Dyson, F.J.: Statistical theory of the energy levels of complex systems I. J. Math. Phys. 3, 140–175 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  18. Fokas, A., Its, A., Kitaev, A.: Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142, 313–344 (1991)

    Article  ADS  Google Scholar 

  19. Forrester, P.J., Witte, N.S.: Application of the \(\tau -\)function theory of Painlevé equations to random matrices: P\(_{V}\), P\(_{III}\), the LUE, JUE and CUE. Commun. Pure Appl. Math. 55, 679–727 (2002)

    Article  Google Scholar 

  20. Freud, G.: On the coefficients in the recursion formulae of orthogonal polynomials, In: Proceeding of the Royal Irish Academy. Section A: Mathematical and Physical Sciences; Royal Irish Academy: Dublin, Ireland, pp. 1–6 (1976)

  21. Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products, 7th ed. (Elsevier; Academic Press, Amsterdam, 2007), p. xlviii+1171, translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX)

  22. Han, P., Chen, Y.: The recurrence coefficients of a semi-classical Laguerre polynomials and the large \(n\) asymptotics of the associated Hankel determinant. Randon Matrices 6, 1740002 (2017)

    Article  MathSciNet  Google Scholar 

  23. Kasuga, T., Sakai, R.: Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121, 13–53 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kelil, A., Appadu, A.: On semi-classical orthogonal polynomials associated with a modified sextic Freud-type weight. Mathematics 8, 1250 (2020)

    Article  Google Scholar 

  25. Lyu, S., Griffin, J., Chen, Y.: The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble. J. Nonlinear Math. Phys. 26(1), 24–53 (2019)

    Article  MathSciNet  Google Scholar 

  26. Min, C., Lyu, S., Chen, Y.: Painlevé III\(^{\prime }\) and the Hankel determinant generated by a singularly perturbed Gaussian weight. Nucl. Phys. B 936, 169–188 (2018)

    Article  ADS  Google Scholar 

  27. Ohyama, Y., Kawamuko, H., Sakai, H., Okamoto, K.: Studies on the Painlevé equations, V, third Painlevé equations of special type \(P_{III}\) (\(D_7\)) and \(P_{III}\) (\(D_8\)). J. Math. Sci. Univ. Tokyo 13, 145–204 (2006)

    MathSciNet  Google Scholar 

  28. Pólya, G., Szegö, G.: Problems and Theorems in Analysis I. Spring, Berlin (1978)

    Google Scholar 

  29. Riesz, F., Nagy, B.S.: Functional Analysis. Blackie &Son Limited, London (1956)

    Google Scholar 

  30. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften 316. Springer, Berlin (1997)

    Book  Google Scholar 

  31. Shohat, J.: A differential equation for orthogonal polynomials. Duke Math. J. 5, 401–417 (1939)

    Article  MathSciNet  Google Scholar 

  32. Szegö, G.: On some Hermitian forms associated with two given curves of the complex plane. Trans. Am. Math. Soc. 40, 450–461 (1936)

    Article  MathSciNet  Google Scholar 

  33. Wang, D., Zhu, M., Chen, Y.: On semiclassical orthogonal polynomials associated with a Freud-type weight. Math. Methods Appl. Sci. 43, 5295–5313 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Wang, D., Zhu, M., Chen, Y.: The smallest eigenvalue of large Hankel matrices associated with a singularly perturbed Gaussian weight. Proc. Am. Math. Soc. 150, 153–160 (2022)

    MathSciNet  Google Scholar 

  35. Xu, S.X., Dai, D., Zhao, Y.Q.: Painlevé III asymptotics of Hankel determinants for a singularly perturbed Laguerre weight. J. Approx. Theory 192, 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yu, J., Li, C., Zhu, M., Chen, Y.: Asymptotics for a singularly perturbed GUE, Painlevé III, double-confluent Heun equations, and small eigenvalues. J. Math. Phys. 63, 063504 (2022)

    Article  ADS  Google Scholar 

  37. Zhu, M., Chen, Y.: On properties of a deformed Freud weight. Random Matrices 8, 1950004 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zhu, M., Chen, Y., Emmart, N., Weems, C.: The smallest eigenvalue of large Hankel matrices. Appl. Math. Comput. 334, 375–387 (2018)

    MathSciNet  Google Scholar 

  39. Zhu, M., Chen, Y., Li, C.: The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight. J. Math. Phys. 61, 073502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

D.Wang would like to acknowledge the support of Changzhou University for Grant No. ZMF22020116. M. Zhu was supported by the National Natural Science Foundation of China under Grant No. 12201333, the Natural Science Foundation of Shandong Province under Grant No. ZR2021QA034, and the Youth Entrepreneurship and Innovation Technology Support Program of Shandong Provincial Higher Education Institutions under Grant No. 2023KJ135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengkun Zhu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with this work.

Additional information

Communicated by F W Nijhoff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhu, M. Discrete, Continuous and Asymptotic for a Modified Singularly Gaussian Unitary Ensemble and the Smallest Eigenvalue of Its Large Hankel Matrices. Math Phys Anal Geom 27, 5 (2024). https://doi.org/10.1007/s11040-024-09477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-024-09477-w

Keywords

Mathematics Subject Classification

Navigation