Skip to main content
Log in

Time-time Covariance for Last Passage Percolation with Generic Initial Profile

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider time correlation for KPZ growth in 1 + 1 dimensions in a neighborhood of a characteristics. We prove convergence of the covariance with droplet, flat and stationary initial profile. In particular, this provides a rigorous proof of the exact formula of the covariance for the stationary case obtained in Ferrari and Spohn (2011). Furthermore, we prove the universality of the first order correction when the two observation times are close and provide a rigorous bound of the error term. This result holds also for random initial profiles which are not necessarily stationary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. To be precise, for ε > 0 small, one can bound \({\mathbb {P}}({L^{\mathcal {B}}}_{(0,0)\to I(u)} -{L^{\mathcal {B}}}_{(0,0)\to I(K)}\geq (\alpha +\beta K^{2} u^{2}) \ell ^{1/3})\) for all uεK1/3 using (C.8) and for m ∈{1,…,ε1/3} we can minimize over t and compute the series expansion in the exponent for large .

References

  1. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2006)

    Article  Google Scholar 

  2. Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63, 1017–1070 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP, Singular Phenomena and Scaling in Mathematical Models, Springer, pp. 91–110 (2014)

  4. Baik, J., Liu, Z.: Multi-point distribution of periodic TASEP. arXiv:1710.03284 (2017)

  5. Baik, J., Liu, Z.: TASEP on a ring in sub-relaxation time scale. Comm. Pure Appl. Math. 71, 747–813 (2018)

    Article  MathSciNet  Google Scholar 

  6. Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)

    Article  MathSciNet  Google Scholar 

  7. Balázs, M., Cator, E., Seppäläinen, T.: Cube root fluctuations for the corner growth model associated to the exclusion process. Electron J. Probab. 11, 1094–1132 (2006)

    Article  MathSciNet  Google Scholar 

  8. Basu, R., Ganguly, S.: Time correlation exponents in last passage percolation. arXiv:1807.09260 (2018)

  9. Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the Slow Bond Problem. arXiv:1408.346 (2014)

  10. Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron J. Probab. 13, 1380–1418 (2008)

    Article  MathSciNet  Google Scholar 

  11. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy1 and Airy2 processes and TASEP fluctuations. Comm. Pure Appl. Math. 61, 1603–1629 (2008)

    Article  MathSciNet  Google Scholar 

  13. Borodin, A., Gorin, V.: Lectures on integrable probability. arXiv:1212.3351 (2012)

  14. Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cator, E., Pimentel, L.: On the local fluctuations of last-passage percolation models. Stoch. Proc. Appl. 125, 879–903 (2015)

    Article  MathSciNet  Google Scholar 

  16. Chhita, S., Ferrari, P.L., Spohn, H.: Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. Ann. Appl. Probab. 28, 1573–1603 (2018)

    Article  MathSciNet  Google Scholar 

  17. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 01, 1130001 (2012)

    Article  MathSciNet  Google Scholar 

  18. Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232–267 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ models. Ann. Inst. H. Poincaré, Probab. Statist. 48, 134–150 (2012)

    Article  ADS  Google Scholar 

  20. Corwin, I., Liu, Z., Wang, D.: Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26, 2030–2082 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ferrari, P.A., Fontes, L.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305–319 (1994)

    Article  MathSciNet  Google Scholar 

  22. Ferrari, P.L.: Slow decorrelations in KPZ growth. J. Stat. Mech., P07022 (2008)

  23. Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010)

  24. Ferrari, P.L., Ghosal, P., Nejjar, P.: Limit law of a second class particle in TASEP with non-random initial condition. arXiv:1710.02323 (2017)

  25. Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields 161, 61–109 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ferrari, P.L., Nejjar, P.: Fluctuations of the competition interface in presence of shocks. ALEA Lat. Am. J. Probab. Math. Stat. 14, 299–325 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Ferrari, P.L., Occelli, A.: Universality of the GOE Tracy-Widom distribution for TASEP with arbitrary particle density. Electron J. Probab. 23(51), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Ferrari, P.L., Spohn, H.: Random Growth Models, The Oxford handbook of random matrix theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) , pp. 782–801. Oxford Univ. Press, Oxford (2011)

  29. Ferrari, P.L., Spohn, H.: On time correlations for KPZ growth in one dimension. SIGMA 12, 074 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242, 277–329 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Johansson, K.: Two time distribution in Brownian directed percolation. Comm. Math. Phys. 351, 441–492 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Johansson, K.: The two-time distribution in geometric last-passage percolation. arXiv:1802.00729 (2018)

  34. Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  Google Scholar 

  35. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2017)

  36. De Nardis, J., Le Doussal, P.: Tail of the two-time height distribution for KPZ growth in one dimension, J. Stat. Mech 053212 (2017)

  37. De Nardis, J., Le Doussal, P.: Two-time height distribution for 1D KPZ growth: the recent exact result and its tail via replica, J. Stat. Mech 093203 (2018)

  38. De Nardis, J., Le Doussal, P., Takeuchi, K.A.: Memory and universality in interface growth. Phys. Rev. Lett. 118, 125701 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Nejjar, P.: Transition to shocks in TASEP and decoupling of last passage times. arXiv:1705.08836 (2017)

  40. Pimentel, L.P.R.: Ergodicity of the KPZ fixed point. arXiv:1708.06006 (2017)

  41. Pimentel, L.P.R.: Local behavior of airy processes. J. Stat. Phys. 173, 1614–1638 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process In and out of equilibrium. In: Sidoravicius, V. (ed.) . Progress in Probability, Birkhäuser (2002)

  43. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MathSciNet  Google Scholar 

  44. Quastel, J.: Introduction to KPZ. Curr. Dev. Math., 125–194 (2011)

  45. Quastel, J., Remenik, D.: Airy processes and variational problems, Topics in percolative and disordered systems. In: Ramírez, A., Ben Arous, G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds.) . Springer (2014)

  46. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. Rost, H.: Non-equilibrium behavior of a many particle system: density profile and local equilibrium. Z. Wahrsch. Verw. Gebiete 58, 41–53 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  49. Takeuchi, K.A.: Statistics of circular interface fluctuations in an off-lattice Eden model. J. Stat. Mech., P05007 (2012)

  50. Takeuchi, K.A.: Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class. Phys. Rev. Lett. 110, 210604 (2013)

    Article  ADS  Google Scholar 

  51. Takeuchi, K.A.: An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A 504, 77–105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  52. Takeuchi, K.A.: Private communication (2018)

  53. Takeuchi, K.A., Akimoto, T.: Characteristic sign renewals of Kardar–Parisi–Zhang fluctuations. J. Stat. Phys. 164, 1167–1182 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the German Research Foundation in the Collaborative Research Center 1060 “The Mathematics of Emergent Effects”, project B04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Ferrari.

Appendices

Appendix A: Bounds on Point-to-Point LPP

In the proofs, we use known results for the point-to-point LPP with exponential random variables, which we recall here.

Proposition A.1

For \(\eta \in (0,\infty )\) define \(\mu =(\sqrt {\eta \ell }+\sqrt {\ell })^{2}\) , \(\sigma =\eta ^{-1/6}(1+\sqrt {\eta })^{4/3}\) , and the rescaled random variable

$$ L^{\text{resc}}_{\ell}:=\frac{L_{(0,0)\to(\eta\ell,\ell)}-\mu}{\sigma\ell^{1/3}}. $$
(A.1)
  1. (a)

    Limit law

    $$ \lim_{\ell\to\infty} {\mathbb{P}}(L^{\text{resc}}_{\ell}\leq s) = F_{\text{GUE}}(s), $$
    (A.2)

    with FGUE the GUE Tracy-Widom distribution function.

  2. (b)

    Bound on upper tail: there exist constants s0,0,C,c such that

    $$ {\mathbb{P}}(L^{\text{resc}}_{\ell}\geq s)\leq C e^{-c s} $$
    (A.3)

    for all 0 and ss0.

  3. (c)

    Bound on lower tail: there exist constants s0,0,C,c such that

    $$ {\mathbb{P}}(L^{\text{resc}}_{\ell}\leq s)\leq C e^{-c |s|^{3/2}} $$
    (A.4)

    for all 0 and s ≤−s0.

(a) was proven in Theorem 1.6 of [30]. Using the relation with the Laguerre ensemble of random matrices (Proposition 6.1 of [1]), or to TASEP described above, the distribution is given by a Fredholm determinant. An exponential decay of its kernel leads directly to (b). See e.g. Proposition 4.2 of [25] or Lemma 1 of [3] for an explicit statement. (c) was proven in [3] (Proposition 3 together with (56)). In the present language it is reported in Proposition 4.3 of [25] as well.

Appendix B: Bounds for Point-to-Line LPP

Proposition B.1

Let \({\mathcal L}=\{(k,-k),k\in \mathbb{Z} \}\). Consider the rescaled LPP from \(\mathcal L\) to (,) given by

$$ L^{\mathcal{L}, \text{resc}}_{\ell}=\frac{L_{\mathcal{L}}\to (\ell,\ell)-4\ell}{2^{4/3}\ell^{1/3}}. $$
(B.1)
  1. (a)

    Limit law

    $$ \lim_{\ell\to\infty} {\mathbb{P}}(L^{\mathcal{L}, \text{resc}}_{\ell}\leq s)=F_{\text{GOE}}(2^{2/3} s). $$
    (B.2)
  2. (b)

    Bound on upper tail: there exists constants s0,0,C,c such that

    $$ {\mathbb{P}}(L^{\mathcal{L}, \text{resc}}_{\ell}\geq s)\leq C e^{-c s} $$
    (B.3)

    for all 0 and ss0.

  3. (c)

    Bound on lower tail: there exists constants s0,0,C,c such that

    $$ {\mathbb{P}}(L^{\mathcal{L}, \text{resc}}_{\ell}\leq s)\leq C e^{-c |s|^{3/2}} $$
    (B.4)

    for all 0 and s ≤−s0.

(a) was obtained in [11, 48] in terms of TASEP, which can be directly rewritten in term of LPP (the complete proof is present in [10]). For general slopes of \(\mathcal L\) it was shown in [27]. (b) this tails follows from the asymptotic analysis on the correlation kernel made in [10]. (c) It follows from (A.4) since \({\mathbb {P}}(L_{\mathcal {L}}\to (\ell ,\ell )\leq x)\leq {\mathbb {P}}(L_{(0,0)\to (\ell ,\ell )}\leq x)\).

Appendix C: Bounds on LPP with Random Initial Condition

Proposition C.1

Define \(L^{\sigma }_{\mathcal {L}\to (\ell ,\ell )}=\max _{k} \{L_{(k,-k)\to (\ell ,\ell )}+h^{0}(k,-k)\}\) with h0 as in (2.6), and consider the rescaled LPP time

$$ L^{\sigma,\mathrm resc}_{\ell}=\frac{L^{\sigma}_{\mathcal{L}\to(\ell,\ell)}-4\ell}{2^{4/3}\ell^{1/3}}. $$
(C.1)

Then, there exists constants s0,0,C,c such that:

  1. (a)

    Bound on upper tail:

    $$ {\mathbb{P}}(L^{\sigma,\mathrm resc}_{\ell}\geq s)\leq C e^{-c s} $$
    (C.2)

    for all 0 and ss0.

  2. (b)

    Tail on lower tail:

    $$ {\mathbb{P}}(L^{\sigma,\mathrm resc}_{\ell}\leq s)\leq C e^{-c |s|^{3/2}} $$
    (C.3)

    for all 0 and s ≤−s0.

Proof

  1. (a)

    Define J(u) = u(2)2/3(1,− 1) and W(u) = h0(J(u))/(24/31/3). By Donsker’s theorem, uW(u) converges weakly to a two-sided Brownian motion with diffusion coefficient 2σ2. Further, define

    $$ L^{\text{pp}}_{\ell}(u):=\frac{L_{J(u)\to (\ell,\ell)}-4\ell}{2^{4/3}\ell^{1/3}}. $$
    (C.4)

    Then, we can write

    $$ L^{\sigma,\mathrm resc}_{\ell} = \max_{u} \{L^{\text{pp}}_{\ell}(u)+W_{\ell}(u)\} \leq \max_{u} \{L^{\text{pp}}_{\ell}(u)+u^{2}/2\}+\max_{u} \{W_{\ell}(u)-u^{2}/2\}. $$
    (C.5)

    Thus,

    $$ {\mathbb{P}}(L^{\sigma,\mathrm resc}_{\ell}\geq s)\!\leq\! {\mathbb{P}}(\max_{u} \{L^{\text{pp}}_{\ell}(u)+u^{2}/2\}\!\geq\! s/2)+{\mathbb{P}}(\max_{u} \{W_{\ell}(u)-u^{2}/2\}\geq s/2). $$
    (C.6)

    By computations based on Doob maximal inequality (used for instance in (4.36)), one obtains \({\mathbb {P}}(\max _{u} \{W_{\ell }(u)-u^{2}/2\}\geq s/2)\leq C e^{-c s^{2}}\) for some constants C,c > 0. To bound the first term without new estimates, remark that for any M we can bound

    $$\begin{array}{@{}rcl@{}} {\mathbb{P}}(\max\limits_{u} \{L^{\text{pp}}_{\ell}(u)+u^{2}/2\}\geq s/2) &\leq& {\mathbb{P}}(\max\limits_{u} L^{\text{pp}}_{\ell}(u)\geq s/4-M^{2}/2)\\ &&+ {\mathbb{P}}(\max\limits_{|u|>M} \{L^{\text{pp}}_{\ell}(u)+u^{2}/2\}\geq s/4) \end{array} $$
    (C.7)

    The exponential decay in s for the second term is just a special case of (4.19) (set τ = 0) and it holds for all MM0, for some finite M0. We fix M = M0 and then, using the fact that \(\max _{u} L^{\text {pp}}_{\ell }(u)=L^{\mathcal {L}, \text {resc}}_{\ell }\), by (B.3) we have exponential decay in s for the first term as well.

  2. (b)

    It follows from (A.4) since \({\mathbb {P}}(L^{\sigma }_{\mathcal {L}}\to (\ell ,\ell )\leq x)\leq {\mathbb {P}}(L_{(0,0)\to (\ell ,\ell )}\leq x)\).

Appendix D: Bounds on Stationary LPP

We now state and give a short proof of the tails of the one-point distribution in the stationary case with ρ = 1/2 of the LPP to (,).

Proposition D.1

Let ρ = 1/2. Then there exists constants s0,0,C,c such that:

  1. (a)

    Bound on upper tail:

    $$ {\mathbb{P}}({L^{\mathcal{B}}}_{(0,0)\to(\ell,\ell)}\geq 4\ell+ 2^{4/3} s \ell^{1/3})\leq C e^{-c s} $$
    (D.1)

    for all 0 and ss0.

  2. (b)

    Bound on lower tail:

    $$ {\mathbb{P}}({L^{\mathcal{B}}}_{(0,0)\to(\ell,\ell)}\leq 4\ell+ 2^{4/3} s \ell^{1/3})\leq C e^{-c |s|^{3/2}} $$
    (D.2)

    for all 0 and s ≤−s0.

Proof

  1. (a)

    One can write \({L^{\mathcal {B}}}_{(0,0)\to (\ell ,\ell )}=\max \{L^{\vert ,\rho }(\ell ,\ell ),L^{-,\rho }(\ell ,\ell )\}\), where L|,ρ(,) (resp. L−,ρ(,)) are the LPP with one-sided perturbation only on i = 0 (resp. j = 0). Then,

    $$ {\mathbb{P}}({L^{\mathcal{B}}}_{(0,0)\to(\ell,\ell)}\geq x)\leq {\mathbb{P}}(L^{\vert,\rho}(\ell,\ell)\geq x)+{\mathbb{P}}(L^{-,\rho}(\ell,\ell)\geq x). $$
    (D.3)

    By choosing x = 4 + s24/31/3, Lemma 3.3 of [27] (based on the estimates on the correlation kernel in [1]) gives exponential decay in s for all ss0.

  2. (b)

    It follows from (A.4), since \({\mathbb {P}}({L^{\mathcal {B}}}_{(0,0)\to (\ell ,\ell )}\leq x)\leq {\mathbb {P}}(L_{(0,0)\to (\ell ,\ell )}\leq x)\).

Lemma D.2

Let ρ = 1/2 and define I(u) = ( − 2u2/3, + 2u2/3). Then, for any α > 0, we have

$$ {\mathbb{P}}(|{L^{\mathcal{B}}}_{(0,0)\to I(K)} -{L^{\mathcal{B}}}_{(0,0)\to I(0)}|\geq \alpha \ell^{1/3})\leq 4 e^{-\alpha^{2}/(16 K)} $$
(D.4)

for all large enough. Furthermore,

$$ {\mathbb{P}}(\max_{u\geq K}{L^{\mathcal{B}}}_{(0,0)\to I(u)} -{L^{\mathcal{B}}}_{(0,0)\to I(K)}-\beta u^{2} \ell^{1/3}\geq \alpha \ell^{1/3})\leq C e^{-\frac{(\alpha+\beta K^{2})^{2}}{16 K}}, $$
(D.5)

for a constant C and for all β > 0 and α > −βK2 and large enough.

Proof

The process \(K\mapsto Y_{K}:={L^{\mathcal {B}}}_{(0,0)\to I(K)} -{L^{\mathcal {B}}}_{(0,0)\to I(0)}\) is a martingale [7] given by a sum of i.i.d.zero mean random variables Zj − 2, with \(Z_{j}\sim \text {Exp}(1/2)\). By the exponential Chebyshev inequality,

$$\begin{array}{@{}rcl@{}} {\mathbb{P}}(|Y_{K}|\geq \alpha\ell^{1/3})& \leq& {\mathbb{P}}(Y_{K}\geq \alpha \ell^{1/3}) + {\mathbb{P}}(-Y_{K}\geq \alpha\ell^{1/3})\\ &\leq& \inf\limits_{t\geq 0} e^{-t\alpha \ell^{1/3}} {\mathbb{E}}(e^{t (Z_{1}-2)})^{2K\ell^{2/3}} + \inf\limits_{t^{\prime}\geq 0} e^{-t^{\prime}\alpha\ell^{1/3}} {\mathbb{E}}(e^{-t^{\prime}(Z_{1}-2)})^{2K\ell^{2/3}}. \end{array} $$
(C.6)

Using \({\mathbb {E}}(e^{t (Z_{1}-2)})=\frac {e^{-2t}}{1-2t}\) for t ∈ (0, 1/2) and \({\mathbb {E}}(e^{-t^{\prime }(Z_{1}-2)})=\frac {e^{2 t^{\prime }}}{1 + 2t^{\prime }}\) for all \(t^{\prime }\geq 0\), after the minimization we obtain

$$ {\mathbb{P}}(|Y_{K}|\geq \alpha\ell^{1/3}) \leq 2 e^{-\alpha^{2}/(16 K)(1+\mathcal{O}(\alpha K^{-1} \ell^{-1/3})}\leq 4 e^{-\alpha^{2}/(16 K)} $$
(C.7)

for all large enough.

For the second estimate, from the inequality

$$\begin{array}{@{}rcl@{}} &&{\mathbb{P}}(\max\limits_{u\geq K}{L^{\mathcal{B}}}_{(0,0)\to I(u)} -{L^{\mathcal{B}}}_{(0,0)\to I(K)}-\beta u^{2} \ell^{1/3}\geq \alpha \ell^{1/3})\\ &\leq &\sum\limits_{m\geq 1}{\mathbb{P}}(\max\limits_{u\in [K m,K(m + 1)]}{L^{\mathcal{B}}}_{(0,0)\to I(u)} -{L^{\mathcal{B}}}_{(0,0)\to I(K)}\geq (\alpha+\beta K^{2} m^{2}) \ell^{1/3})\\ &\leq & \sum\limits_{m\geq 1} \inf\limits_{t>0} e^{-t(\alpha+\beta K^{2} m^{2})\ell^{1/3}} {\mathbb{E}}(e^{t(Z_{1}-2)})^{2K m \ell^{2/3}}. \end{array} $$
(C.8)

Maximising over t and taking the sum we finally getFootnote 1

$$ {\mathbb{P}}\left( \max_{u\geq K}{L^{\mathcal{B}}}_{(0,0)\to I(u)} -{L^{\mathcal{B}}}_{(0,0)\to I(-K)}-\beta u^{2} \ell^{1/3}\geq \alpha \ell^{1/3}\right) \leq C e^{-\frac{(\alpha+\beta K^{2})^{2}}{16 K}} $$
(C.9)

for a constant C and for all β > 0 and α > −βK2 and large enough. □

Appendix E: Bounds for point-to-half line LPP

Proposition E.1

Let I(u) = (τN,τN) + u(2N)2/3(1,− 1). Then,

$$ {\mathbb{P}}\left( \max_{|u|>M} L_{I(u)\to (N,N)}>4(1-\tau)N + 2^{4/3}(s-\gamma M^{2}) N^{1/3}\right)\leq C e^{-c M^{2} (1-\tau)^{-4/3}} e^{-\tilde c s (1-\tau)^{-1/3}} $$
(E.1)

for some constants \(C,c,\tilde c>0\), which can be taken uniform in N and uniform for γ in a compact subset of (0, 1/(1 − τ)).

Proof

By symmetry, it is enough to get the bound on the distribution of \(\max _{u<-M} L_{I(u)\to (N,N)}\). By first shifting I(−M) to the origin, and then using the mapping between LPP and TASEP, the distribution function is the same as the distribution of TASEP particle number \(n=t/4+\tilde \tau (t/2)^{2/3}\) at time t = 4(1 − τ)N + 24/3N1/3(sγM2), starting at xk(0) = − 2k,k ≥ 0.

From Proposition 3 of [12] we have an explicit expression in terms of Fredholm determinant. The upper tail estimate is standard. Using Hadamard’s bound it is enough to have a bound on the correlation kernel. In Section 4 of [12] exponential decay of the rescaled correlation kernel has been proven. Then, simple algebraic computations give the claimed result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, P.L., Occelli, A. Time-time Covariance for Last Passage Percolation with Generic Initial Profile. Math Phys Anal Geom 22, 1 (2019). https://doi.org/10.1007/s11040-018-9300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-018-9300-6

Keywords

Mathematics Subject Classification (2010)

Navigation