Skip to main content
Log in

Asymptotic Behavior of an Elastic Satellite with Internal Friction

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings Publishing, Reading (1978)

    MATH  Google Scholar 

  2. Alexander, M.E.: The weak friction approximation and tidal evolution in close binary systems. Astrophys. Space Sci. 23, 459–510 (1973)

    Article  ADS  Google Scholar 

  3. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  5. Ball, J.M.: Some open problems in elasticity. In: Geometry, Mechanics, and Dynamics, pp 459–510. Springer, New York (2002)

  6. Bambusi, D., Haus, E.: Asymptotic stability of synchronous orbits for a gravitating viscoelastic sphere. Celest. Mech. Dyn. Astron. 114(3), 255–277 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Darwin, G.H.: On the precession of a viscous spheroid, and on the remote history of the earth. Philos. Trans. R. Soc. London, Ser. I 170, 447–538 (1879)

    Article  MATH  Google Scholar 

  8. Darwin, G.H.: On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. R. Soc. London, Ser. I 171, 713–891 (1880)

    Article  MATH  Google Scholar 

  9. Efroimsky, M., Williams, J.G.: Tidal torques. A critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Efroimsky, M.: Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)

    Article  ADS  MATH  Google Scholar 

  12. Goldreich, P.: Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966)

    Article  ADS  Google Scholar 

  13. Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space Phys. 2, 661–685 (1964)

    Article  ADS  Google Scholar 

  14. Kawashima, S., Shibata, Y.: Global existence and exponential stability of small solutions to nonlinear viscoelasticity. Commun. Math. Phys. 148, 189–208 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. LaSalle, J.P.: The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia (1976). With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein, Regional Conference Series in Applied Mathematics

  16. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser/Springer Basel AG, Basel (2013)

    MATH  Google Scholar 

  18. MacDonald, G.J.F.: Tidal friction. Rev. Geophys. Space Phys. 2, 467–541 (1964)

    Article  ADS  Google Scholar 

  19. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc., New York (1994). Corrected reprint of the 1983 original

    Google Scholar 

  20. Peale, S.J., Cassen, P., Reynolds, R.T.: Tidal dissipation, orbital evolution, and the nature of Saturn’s inner satellites. Icarus 43, 65–72 (1980)

    Article  ADS  Google Scholar 

  21. Potier-Ferry, M.: The linearization principle for the stability of solutions of quasilinear parabolic equations. I. Arch. Rational Mech. Anal. 77, 301–320 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Potier-Ferry, M.: On the mathematical foundations of elastic stability theory. I. Arch. Rational Mech. Anal. 78, 55–72 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Simo, J.C., Posbergh, T.A., Marsden, J.E.: Stability of relative equilibria. Part II, application to nonlinear elasticity. Arch. Ration. Mech. Anal. 115, 61–100 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)

  25. Teixidó Román, M.: Hamiltonian methods in stability and bifurcation problems for artificial satellite dynamics. Master’s degree Thesis http://upcommons.upc.edu/pfc/bitstream/2099.1/14225/1/memoria-8.pdf (2012)

  26. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bambusi.

Additional information

This research was founded by the Prin project 2010–2011 “Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haus, E., Bambusi, D. Asymptotic Behavior of an Elastic Satellite with Internal Friction. Math Phys Anal Geom 18, 14 (2015). https://doi.org/10.1007/s11040-015-9184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-015-9184-7

Keywords

Mathematics Subject Classification (2010)

Navigation