Skip to main content
Log in

On the Power-counting Renormalizability of a Lifshitz-type QFT in Configuration Space

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

Recently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the \({\phi _{4}^{4}}\)-theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D. 79, 084008 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. In effect, the Epstein-Glaser approach [3] avoids the infrared problem by multiplying the interaction by a test function g(x), which vanishes rapidly for \(|x| \to \infty \). In this case, the long range part of the interaction is cut-off. Infrared problem arises in the adiabatic limit g(x)→1. Performing the adiabatic limit is a delicate task, since the limit has to be taken s.t. observable quantities (cross sections) remain finite. Blanchard-Seneor [4] showed that the adiabatic limit exists (in the distributional sense) for the QED and λ: ϕ 2n : Theories.

  3. Epstein, H., Glaser, V.: The role of locality in perturbation theory,. Ann. Inst. Henri Poincaré 19, 211 (1973)

    MathSciNet  Google Scholar 

  4. Blanchard, P., Seneor, R.: Green’s functions for theories with massless particles (in perturbation theory). Ann. Inst. Henri Poincaré 23, 147 (1975)

    MathSciNet  Google Scholar 

  5. Scharf, G.: Finite Quantum Eletrodynamics: the Causal Approach, 2nd edn.Springer (1995)

  6. Stora, R.: A Note on elliptic perturbative renormalization on a compact manifold. (unpublished manuscript)

  7. Stora, R.: A Note on elliptic perturbative renormalization on a compact manifold. (unpublished manuscript)

  8. Stora, R.: Differential algebras in lagrangean field theory. (unpublished manuscript)

  9. Stora, R.: Local gauge groups in quantum field theory: perturbative gauge theories. (unpublished manuscript)

  10. Popineau, G., Stora, R.: A Pedagogical remark on the main theorem of perturbative renormalization theory. (unpublished preprint)

  11. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  14. Hollands, S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273

  15. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hollands, S., Wald, R.M.: Quantum field theory in curved spacetime the operator product expansion and dark energy. Gen. Rel. Grav. 40, 2051–2059 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Seneor, R. In: Velo, G., Wightman, A.S. (eds.) : Renormalization Theory. D. Reidel, Dordrecht (1976)

  18. Prange, D.: Lorentz covariance in Epstein-Glaser renormalization. preprint, arXiv: hep-th/9904136 (1999)

  19. Prange, D.: Causal perturbation theory and differential renormalization. J. Phys. A. 32, 2225 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Pinter, G.: Epstein-Glaser Renormalization: Finite Renormalizations , the S-Matrix of Φ4 Theory and the Action Principle, PhD Thesis, October 2000, DESY-THESIS-2000-047. (2000)

  21. Gracia-Bondia, J.: Improved Epstein–Glaser renormalization in coordinate space I. Euclidean framework. Math. Phys. Anal. Geom. 6, 59 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lazzarini, S, Gracia-Bondia, J.M.: Improved Epstein-Glaser renormalization II. Lorentz invariant framework. J. Math. Phys. 44, 3863 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. Comm. Math. Phys. 243, 275 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16, 1291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nikolov, N.M.: Cohomological analysis of the Epstein-Glaser renormalization. preprint, arXiv: 0712.2194 (2007)

  26. Nikolov, N., Stora, R., Todorov, I.: Configuration space renormalization of massless QFT as an extension problem for associate homogeneous distributions. preprint, http://hal.archives-ouvertes.fr/hal-00703717 (2011)

  27. Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization, PhD thesis, April 2010, DESY-THESIS-2010-012 (2010)

  28. Falk, S., Häußling R., Scheck, F.: Renormalization in quantum field theory: an improved rigorous method. J. Phys. A. 43, 035401 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  29. Helling, R.C.: How I Learned to Stop Worrying and Love QFT. Notes by C. Sluka and M. Flory, LMU, Summer 2011, arXiv: 1201.2714 [math-ph] (2011)

  30. Dütsch, M., Gracia-Bondia, J.: On the assertion that PCT violation implies Lorentz non-invariance. Phys. Lett. B. 711, 428 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  31. Bahns, D., Wrochna, M: On-shell extension of distributions. arXiv: 1210.5484 [math-ph].

  32. Steinmann, O.: Perturbation expansions in axiomatic field theory. In: Lecture Notes in Physics, Vol. 11. Springer (1971)

  33. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn.Springer (1990)

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness, vol. 2. Academic Press (1975)

  35. We recall that if u and v are functions on nd then the product u(x)v(x) is the restriction to the diagonal of the tensor product u(x)v(y) defined for (x,y)∈ nd× nd. Thus, by Hörmander’s criterion on the wavefront sets, the product of distributions u and v in the same point can be defined as the pullback of the tensor product uv by the diagonal map provided that there are no points (x,k 1)∈W F(u) and (x,k 2)∈W F(v) s.t. k 1+k 2=0.

  36. Visser, M.: Lorentz symmetry breaking as a quantum field theory regulator. Phys. Rev. D. 80, 025011 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Visser, M.: Power-counting renormalizability of generalized Hořava gravity. arXiv: 0912.4757 [hep-th]

  38. Huang, B., Huang, Q.-G.Phys. Lett. B. 683, 108 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  39. Anselmi, D.: Weighted scale invariant quantum field theories. JHEP 0802, 051 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Anselmi, D.: Weighted power counting and Lorentz violating gauge theories I. General properties. Annals. Phys. 324, 874 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Anselmi, D.: Weighted power counting and Lorentz violating gauge theories II. Classification. Annals. Phys. 324, 1058 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Anselmi, D.: Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model. Phys. Rev. D. 79, 025017 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. T. Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, D.H.T. On the Power-counting Renormalizability of a Lifshitz-type QFT in Configuration Space. Math Phys Anal Geom 17, 139–150 (2014). https://doi.org/10.1007/s11040-014-9146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-014-9146-5

Keywords

Navigation