Skip to main content
Log in

Wegner-type Bounds for a Two-particle Lattice Model with a Generic “Rough” Quasi-periodic Potential

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of two-particle tight-binding Hamiltonians, describing pairs of interacting quantum particles on the lattice ℤd, d ≥ 1, subject to a common external potential V(x) which we assume quasi-periodic and depending on auxiliary parameters. Such parametric families of ergodic deterministic potentials (“grands ensembles”) have been introduced earlier in Chulaevsky (2007), in the framework of single-particle lattice systems, where it was proved that a non-uniform analog of the Wegner bound holds true for a class of quasi-periodic grands ensembles. Using the approach proposed in Chulaevsky and Suhov (Commun Math Phys 283(2):479–489, 2008), we establish volume-dependent Wegner-type bounds for a class of quasi-periodic two-particle lattice systems with a non-random short-range interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bovier, A., Campanino, M., Klein, A., Perez, F.: Smoothness of the density of states in the Anderson model at high disorder. Commun. Math. Phys. 114(3), 439–461 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bourgain, J., Goldstein, M.: On nonperturbative localization with quasiperiodic potentials. Ann. Math. 152(3), 835–879 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrödinger operators on ℤ with potential generated by the skew-shift. Commun. Math. Phys. 220(3), 583–621 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bourgain, J., Schlag, W.: Anderson localization for Schrödinger operators on ℤ with strongly mixing potentials. Commun. Math. Phys. 215(1), 143–175 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Campanino, M., Klein, A.: A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model. Commun. Math. Phys. 104(2), 227–241 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  7. Chan, J.: Method of variations of potential of quasi-periodic Schrödinger equations. Geom. Funct. Anal. 17(5), 1416–1478 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chulaevsky, V.: Wegner–Stollmann estimates for some quantum lattice systems. In: Contemp. Math., vol. 447, pp. 17–28. Amer. Math. Soc., Providence (2007)

    Google Scholar 

  9. Chulaevsky, V., Suhov, Y.: Wegner bounds for a two-particle tight binding model. Commun. Math. Phys. 283(2), 479–489 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Combes, J.-M., Hislop, P.D., Klopp, F.: An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J. 140(3), 469–498 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantinescu, F., Fröhlich, J., Spencer, T.: Analyticity of the density of states and replica method for random Schrödinger operators on a lattice. J. Stat. Phys. 34(3–4), 571–596 (1984)

    Article  MATH  ADS  Google Scholar 

  12. Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys. 90(2), 207–218 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Delyon, F., Souillard, B.: Remark on the continuity of the density of states of ergodic finite difference operators. Commun. Math. Phys. 94(2), 289–291 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124(2), 285–299 (1989)

    Article  MATH  ADS  Google Scholar 

  16. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in Anderson tight binding model. Commun. Math. Phys. 101(1), 21–46 (1985)

    Article  MATH  ADS  Google Scholar 

  17. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  MATH  ADS  Google Scholar 

  18. Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)

    Article  MATH  ADS  Google Scholar 

  19. Pastur, L.A., Figotin, A.L.: Spectra of Random and Almost Periodic Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  20. Simon, B., Taylor, M.: Harmonic analysis on SL(2, ℝ) and smoothness of the density of states in the one-dimensional Anderson model. Commun. Math. Phys. 101(1), 1–19 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Stollmann, P.: Wegner estimates and localization for continuous Anderson models with some singular distributions. Arch. Math. (Basel) 75(4), 307–311 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Stollmann, P.: Caught by Disorder. A Course on Bound States in Random Media. Birkhäuser, Boston (2001)

    Google Scholar 

  23. Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys., B. Condens. Matter 44(1–2), 9–15 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaume, M. Wegner-type Bounds for a Two-particle Lattice Model with a Generic “Rough” Quasi-periodic Potential. Math Phys Anal Geom 13, 205–217 (2010). https://doi.org/10.1007/s11040-010-9075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-010-9075-x

Keywords

Mathematics Subject Classifications (2010)

Navigation