Skip to main content
Log in

Secrecy Performance of Multi-RIS-Assisted Wireless Systems

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

This paper presents a theoretical framework using multiple reconfigurable intelligent surfaces (RISs) for enhancing the secrecy performance of wireless systems. In particular, multiple RISs are exploited to support transmitter-legitimate user communication under the existence of an eavesdropper. Two practical scenarios are investigated, i.e., there are only transmitter-eavesdropper links (case 1) and there are both transmitter-eavesdropper and transmitter-RIS-eavesdropper links (case 2). We mathematically obtain the closed-form expressions of the average secrecy capacity (ASC) of the considered system in these two investigated cases over Nakagami-m fading channels. The impacts of the system parameters, such as the locations of the RISs, the number of REs, and the Nakagami-m channels, are deeply evaluated. Computer simulations are used to validate our mathematical analysis. Numerical results clarify the benefits of using multiple RISs for improving the secrecy performance of wireless systems. Specifically, the ASCs in cases 1 and 2 are significantly higher than that in the case without RISs. Importantly, when the locations of the RISs are fixed, we can arrange the larger RSIs near either the transmitter or legitimate user to achieve higher ASCs. In addition, when the numbers of reflecting elements (REs) in the RISs increase, the ASCs in cases 1 and 2 are greatly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

Notes

  1. We should note that previous works, such as [4, 16], often normalized the system parameters. Thus, their results may not be suitable in 5G and B5G networks. Meanwhile, our results fully reflect the behaviors of 5G and B5G networks because the system and channel parameters are set based on practical measurements.

  2. In the previous works, since \(\rho _e\) is fixed while \(\rho _d\) is increased when \(P_s\) increases, the ASC avoids the saturation ceilings in the high transmit power regime [4].

References

  1. Lu W, Ding Y, Gao Y, Hu S, Wu Y, Zhao N, Gong Y (2022) Resource and trajectory optimization for secure communications in dual unmanned aerial vehicle mobile edge computing systems. IEEE Trans. Ind. Informatics 18(4):2704–2713

    Article  Google Scholar 

  2. Hoang TM, Dung LT, Nguyen BC, Tran XN, Kim T (2021) Secrecy outage performance of FD-NOMA relay system with multiple non-colluding eavesdroppers. IEEE Trans. Veh. Technol. 70(12):12 985--12 997

    Article  Google Scholar 

  3. Hoang TM, Duong TQ, Tuan HD, Lambotharan S, Hanzo L (2021) Physical layer security: Detection of active eavesdropping attacks by support vector machines. IEEE Access 9:31 595--31 607

    Article  Google Scholar 

  4. Do D, Le A, Ha NX, Dao N (2022) Physical layer security for internet of things via reconfigurable intelligent surface. Future Gener. Comput. Syst. 126:330–339

    Article  Google Scholar 

  5. Ai Y, de Figueiredo FAP, Kong L, Cheffena M, Chatzinotas S, Ottersten BE (2021) Secure vehicular communications through reconfigurable intelligent surfaces. IEEE Trans. Veh. Technol. 70(7):7272–7276

    Article  Google Scholar 

  6. Ha D, Duy TT, Son PN, Le-Tien T, Voznák M (2021) Security-reliability trade-off analysis for rateless codes-based relaying protocols using NOMA, cooperative jamming and partial relay selection. IEEE Access 9:131 087--131 108

    Article  Google Scholar 

  7. Thai CDT, Bao V-NQ, Vo N-S (2022) Secure communication using interference cancellation against multiple jammers. IEEE Trans. Veh, Technol

    Book  Google Scholar 

  8. Atapattu S, Fan R, Dharmawansa P, Wang G, Evans JS, Tsiftsis TA (2020) Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization. IEEE Trans. Commun. 68(10):6552–6567

    Article  Google Scholar 

  9. Yu H, Tuan HD, Nasir AA, Duong TQ, Poor HV (2020) Joint design of reconfigurable intelligent surfaces and transmit beamforming under proper and improper gaussian signaling. IEEE J. Sel. Areas Commun. 38(11):2589–2603

    Article  Google Scholar 

  10. Basar E, Renzo MD, de Rosny J, Debbah M, Alouini M, Zhang R (2019) Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7:116 753--116 773

    Article  Google Scholar 

  11. Björnson E, Sanguinetti L (2020) Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces. IEEE Open J. Commun. Soc. 1:1306–1324

    Article  Google Scholar 

  12. Chen Y, Ai B, Zhang H, Niu Y, Song L, Han Z, Poor HV (2021) Reconfigurable intelligent surface assisted device-to-device communications. IEEE Trans. Wirel. Commun. 20(5):2792–2804

    Article  Google Scholar 

  13. Björnson E, Özdogan Ö, Larsson EG (2020) Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 9(2):244–248

    Article  Google Scholar 

  14. Boulogeorgos AA, Alexiou A (2020) Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access 8:94 463--94 483

    Article  Google Scholar 

  15. ElMossallamy MA, Zhang H, Song L, Seddik KG, Han Z, Li GY (2020) Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Trans. Cogn. Commun. Netw. 6(3):990–1002

    Article  Google Scholar 

  16. Yang L, Yang J, Xie W, Hasna MO, Tsiftsis T, Renzo MD (2020) Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Trans. Veh. Technol. 69(10):12 296--12 300

    Article  Google Scholar 

  17. Makarfi AU, Rabie KM, Kaiwartya O, Li X, Kharel R (2020) Physical layer security in vehicular networks with reconfigurable intelligent surfaces. In 91st IEEE Vehicular Technology Conference, VTC Spring 2020, Antwerp, Belgium, May 25-28, 2020. IEEE, pp. 1–6

  18. Nguyen ND, Le A, Munochiveyi M (2021) Secrecy outage probability of reconfigurable intelligent surface-aided cooperative underlay cognitive radio network communications. In 22nd Asia-Pacific Network Operations and Management Symposium, APNOMS 2021, Tainan, Taiwan, September 8-10, 2021. IEEE, pp. 73–77

  19. Tang Z, Hou T, Liu Y, Zhang J (2021) Secrecy performance analysis for reconfigurable intelligent surface aided NOMA network. In IEEE International Conference on Communications Workshops, ICC Workshops 2021, Montreal, QC, Canada, June 14-23, 2021. IEEE, pp. 1–6

  20. Ferreira RC, Facina MSP, de Figueiredo FAP, Fraidenraich G, de Lima ER (2021) Secrecy analysis and error probability of LIS-aided communication systems under Nakagami-m fading. Entropy 23(10):1284

    Article  MathSciNet  Google Scholar 

  21. Khoshafa MH, Nkouatchah TMN, Ahmed MH (2021) Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications. IEEE Commun. Lett. 25(5):1443–1447

    Article  Google Scholar 

  22. Trigui I, Ajib W, Zhu W (2021) Secrecy outage probability and average rate of RIS-aided communications using quantized phases. IEEE Commun. Lett. 25(6):1820–1824

    Article  Google Scholar 

  23. Zhang J, Du H, Sun Q, Ai B, Ng DWK (2021) Physical layer security enhancement with reconfigurable intelligent surface-aided networks. IEEE Trans. Inf. Forensics Secur. 16:3480–3495

    Article  Google Scholar 

  24. Youn J, Son W, Jung BC (2021) Physical-layer security improvement with reconfigurable intelligent surfaces for 6g wireless communication systems. Sensors 21(4):1439

    Article  Google Scholar 

  25. Tuan PV, Son PN, Duy TT, Nga TTK, Koo I et al (2022) Information security in intelligent reflecting surface-aided two-way network. In 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE). IEEE, pp. 155–159

  26. Gong C, Yue X, Wang X, Dai X, Zou R, Essaaidi M (2022) Intelligent reflecting surface aided secure communications for NOMA networks. IEEE Trans. Veh. Technol. 71(3):2761–2773

    Article  Google Scholar 

  27. Cao K, Ding H, Li W, Lv L, Gao M, Gong F, Wang B (2022) On the ergodic secrecy capacity of intelligent reflecting surface aided wireless powered communication systems. IEEE Wirel. Commun. Lett. 11(11):2275–2279

    Article  Google Scholar 

  28. Tran PT, Nguyen BC, Hoang TM, Le XH, Nguyen VD (2022) Exploiting multiple RISs and direct link for performance enhancement of wireless systems with hardware impairments. IEEE Trans. Commun. 70(8):5599–5611

    Article  Google Scholar 

  29. Yang L, Yang Y, da Costa DB, Trigui I (2021) Outage probability and capacity scaling law of multiple RIS-aided networks. IEEE Wirel. Commun. Lett. 10(2):256–260

    Article  Google Scholar 

  30. Yildirim I, Uyrus A, Basar E (2021) Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks. IEEE Trans. Commun. 69(2):1290–1301

    Article  Google Scholar 

  31. Hou T, Liu Y, Song Z, Sun X, Chen Y, Hanzo L (2020) Reconfigurable intelligent surface aided NOMA networks. IEEE J. Sel. Areas Commun. 38(11):2575–2588

    Article  Google Scholar 

  32. Tahir B, Schwarz S, Rupp M (2021) Analysis of uplink IRS-assisted NOMA under nakagami-m fading via moments matching. IEEE Wirel. Commun. Lett. 10(3):624–628

    Article  Google Scholar 

  33. Alnwaimi G, Boujemaa H (2021) Non orthogonal multiple access using reconfigurable intelligent surfaces. Wirel. Pers. Commun. 121(3):1607–1625

    Article  Google Scholar 

  34. Leon-Garcia A, Leon-Garcia A (2008) Probability, statistics, and random processes for electrical engineering. Pearson/Prentice Hall, 3rd ed. Upper Saddle River, NJ

  35. Prudnikov AP (1998) Integrals and series. vol 3, More special functions; Prudnikov AP, Brychkov Yu A, Marichev OI; translated from the Russian by Gould GG. Gordon and Breach

  36. Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic press

  37. Nguyen BC, Dung LT, Hoang TM, Tran XN, Kim T (2021) Impacts of imperfect CSI and transceiver hardware noise on the performance of full-duplex DF relay system with multi-antenna terminals over nakagami-m fading channels. IEEE Trans. Commun. 69(10):7094–7107

    Article  Google Scholar 

  38. da Costa DB, Ding H, Ge J (2011) Interference-limited relaying transmissions in dual-hop cooperative networks over nakagami-m fading. IEEE Commun. Lett. 15(5):503–505

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gia Thien Luu.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix detailedly provides the step-by-step derivations of the CDFs of \(\beta _d\), \(\beta _e^{c1}\), and \(\beta _e^{c2}\).

Firstly, \(F_{\beta _e^{c1}}(x)\) can be derived directly by using the CDF of the channel gain following Nakagami-m fading channels [37], i.e.,

$$\begin{aligned} \nonumber F_{\beta _e^{c1}}(x)&= \textrm{Pr} \left\{ h_{se}^2 \rho _e< x \right\} = \textrm{Pr} \left\{ h_{se}^2 < \frac{x}{\rho _e} \right\} \\ \nonumber&= \frac{1}{\Gamma (m_{se})} \gamma \Bigg ( m_{se}, \frac{m_{se} x}{\Omega _{se} \rho _e } \Bigg ) \\&= 1 - \frac{1}{\Gamma (m_{se})} \Gamma \Bigg ( m_{se}, \frac{m_{se} x}{\Omega _{se} \rho _e } \Bigg ). \end{aligned}$$
(37)

Secondly, \(F_{\beta _d}(x)\) and \(F_{\beta _e^{c2}}(x)\) are calculated as follows. Let \(\mathcal {X}_{dkl}= g_{kl} h_{kl} \), \(\mathcal {Y}_{dk} = \sum _{l=1}^{L_k} \mathcal {X}_{dkl} \), \(\mathcal {Z}_{d} = \sum _{k=1}^{K} \mathcal {Y}_{dk}\), \(\mathcal {T}_{d} = h_{sd} + \mathcal {Z}_d\), \(\mathcal {X}_{ekl}= g_{kl} r_{kl} \), \(\mathcal {Y}_{ek} = \sum _{l=1}^{L_k} \mathcal {X}_{ekl} \), \(\mathcal {Z}_e = \sum _{k=1}^{K} \mathcal {Y}_{ek}\), and \(\mathcal {T}_e = h_{se} + \mathcal {Z}_e\) be new variables, Eqs. 23 and 25 respectively become

$$\begin{aligned} F_{\beta _d}(x) = \textrm{Pr} \left\{ \mathcal {T}_{d}^2 \rho _d < x \right\} , \end{aligned}$$
(38)
$$\begin{aligned} F_{\beta _e^{c2}}(x) = \textrm{Pr} \left\{ \mathcal {T}_e^2 \rho _e < x \right\} . \end{aligned}$$
(39)

It is obvious that \(F_{\beta _d}(x)\) and \(F_{\beta _e^{c2}}(x)\) have similar types. Thus, in the following parts, we focus on deriving \(F_{\beta _d}(x)\), \(F_{\beta _e^{c2}}(x)\) can be derived similarly as \(F_{\beta _d}(x)\).

Since the Nakagami-m fading channels are considered, the nth moment of \(h_{sd}\) is given by [28]

$$\begin{aligned} \mu _{h_{sd}}(n) \triangleq \mathbb {E}\{h_{sd}^n\} = \frac{\Gamma (m_{sd}+n/2)}{\Gamma (m_{sd})} \Big ( \frac{m_{sd}}{\Omega _{sd}}\Big )^{-n/2}. \end{aligned}$$
(40)

From Eq. 40, we obtain the first and second moments of \(h_{sd}\) as

$$\begin{aligned} \mu _{h_{sd}}(1) = \frac{\Gamma (m_{sd}+1/2)}{\Gamma (m_{sd})} \sqrt{\frac{\Omega _{sd} }{m_{sd}}}, \end{aligned}$$
(41)
$$\begin{aligned} \mu _{h_{sd}}(2) = \frac{\Gamma (m_{sd}+1)\Omega _{sd}}{\Gamma (m_{sd})m_{sd}} = \Omega _{sd}. \end{aligned}$$
(42)

Since \(\mathcal {X}_{dkl}= g_{kl} h_{kl} \), the PDF of \(\mathcal {X}_{dkl}\) is calculated as

$$\begin{aligned} f_{\mathcal {X}_{dkl}}(y) = \int _{0}^{\infty } \frac{1}{x} f_{h_{kl}} \Big (\frac{y}{x}\Big ) f_{g_{kl}} (x) dx. \end{aligned}$$
(43)

Replacing the PDF given in Eq. 11 into Eq. 43, we have

$$\begin{aligned} \nonumber f_{\mathcal {X}_{dkl}}(y) =&\frac{4}{\Gamma (m_{g_k}) \Gamma (m_{h_k}) } \Big (\frac{m_{g_k}}{ \Omega _{g_k}}\Big )^{m_{g_k}} \Big (\frac{m_{h_k}}{ \Omega _{h_k}}\Big )^{m_{h_k}} \\ \nonumber&\times y^{2 m_{h_k}-1} \int _{0}^{\infty } x^{2 m_{g_k} - 2 m_{h_k} -1} \\&\times \exp \Big (- \frac{m_{g_k} x^2}{\Omega _{g_k}} -\frac{y^2 m_{h_k}}{ \Omega _{h_k} x^2} \Big ) dx. \end{aligned}$$
(44)

Applying [36, Eq. (3.478.4)], Eq. 44 becomes

$$\begin{aligned} f_{\mathcal {X}_{dkl}}(y) = \frac{4 \alpha _{kl}^{m_{g_k}+m_{h_k}} }{\Gamma (m_{g_k}) \Gamma (m_{h_k})} y^{m_{g_k}+ m_{h_k}-1} \mathcal {K}_{m_{g_k} - m_{h_k}} (2 \alpha _{kl} y), \end{aligned}$$
(45)

where \(\alpha _{kl} = \sqrt{\frac{m_{g_k} m_{h_k}}{\Omega _{g_k} \Omega _{h_k}}}\).

Now, the nth moment of \(\mathcal {X}_{dkl}\) is computed as

$$\begin{aligned} \mu _{\mathcal {X}_{dkl}}(n) \triangleq \mathbb {E}\{\mathcal {X}_{dkl}^n\} = \int _{0}^{\infty } y^n f_{\mathcal {X}_{dkl}}(y) dy. \end{aligned}$$
(46)

Using [36, Eq. (6.561.16)], Eq. 46 becomes

$$\begin{aligned} \mu _{\mathcal {X}_{dkl}}(n) = \alpha _{kl}^{-n} \frac{\Gamma (m_{g_k}+n/2) \Gamma (m_{h_k}+n/2) }{\Gamma (m_{g_k}) \Gamma (m_{h_k}) }. \end{aligned}$$
(47)

Then, the CDF of \(\mathcal {X}_{dkl}\) is given by

$$\begin{aligned} \nonumber&F_{\mathcal {X}_{dkl}}(x) \approx \frac{1}{\Gamma \Big ( \frac{[\mu _{\mathcal {X}_{dkl}}(1)]^2 }{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2} \Big )} \\&\times \gamma \Big ( \frac{[\mu _{\mathcal {X}_{dkl}}(1)]^2 }{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2}, \frac{\mu _{\mathcal {X}_{dkl}}(1) x}{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2} \Big ) \cdot \end{aligned}$$
(48)

Now, we can derive the CDF of \(\mathcal {Y}_{dk} = \sum _{l=1}^{L_k} \mathcal {X}_{dkl} \) as

$$\begin{aligned} \nonumber&F_{\mathcal {Y}_{dk}}(x) \approx \frac{1}{\Gamma \Big ( \frac{L_k [\mu _{\mathcal {X}_{dkl}}(1)]^2 }{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2} \Big )} \\&\times \gamma \Big ( \frac{L_k [\mu _{\mathcal {X}_{dkl}}(1)]^2 }{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2}, \frac{\mu _{\mathcal {X}_{dkl}}(1) x}{\mu _{\mathcal {X}_{dkl}}(2) - [\mu _{\mathcal {X}_{dkl}}(1)]^2} \Big ) \cdot \end{aligned}$$
(49)

Based on [38], we obtain the nth moment of \(\mathcal {Y}_{dk}\) as

$$\begin{aligned} \nonumber \mu _{\mathcal {Y}_{dk}}(n)&\triangleq \mathbb {E}\{\mathcal {Y}_{dk}^n\} \\ \nonumber&= \sum _{n_1=0}^{n} \sum _{n_2=0}^{n_1} \cdots \sum _{n_{L_k -1}=0}^{n_{L_k -2}} {n \atopwithdelims ()n_1} {n_1 \atopwithdelims ()n_2} \cdots {n_{L_k -2} \atopwithdelims ()n_{L_k -1}} \\&\times \mu _{\mathcal {X}_{dk1}}(n -n_1) \mu _{\mathcal {X}_{dk2}}(n_1 -n_2) \cdots \mu _{\mathcal {X}_{dkL_k}}(n_{L_k -1}), \end{aligned}$$
(50)

where \({a \atopwithdelims ()b} = \frac{a!}{b!(a-b)!}\), and the nth moment of \(\mathcal {Z}_d = \sum _{k=1}^{K} \mathcal {Y}_{dk}\) is

$$\begin{aligned} \nonumber \mu _{{\mathcal {Z}_d}}(n)&\triangleq \mathbb {E}\{\mathcal {Z}_d^n\} \\ \nonumber&= \sum _{n_1=0}^{n} \sum _{n_2=0}^{n_1} \cdots \sum _{n_{K -1}=0}^{n_{K -2}} {n \atopwithdelims ()n_1} {n_1 \atopwithdelims ()n_2} \cdots {n_{K -2} \atopwithdelims ()n_{K -1}} \\&\times \mu _{\mathcal {Y}_{d1}}(n -n_1) \mu _{\mathcal {Y}_{d2}}(n_1 -n_2) \cdots \mu _{\mathcal {Y}_{dK}}(n_{K -1}). \end{aligned}$$
(51)

From Eqs. 47,50 and 51, we compute the first and second moments of \({\mathcal {Z}_d}\) as

$$\begin{aligned} \mu _{\mathcal {Z}_d}(1) = \sum _{k=1}^{K} \sum _{l=1}^{L_k} \mu _{\mathcal {X}_{dkl}}(1) , \end{aligned}$$
(52)
$$\begin{aligned} \nonumber \mu _{\mathcal {Z}_d}(2) =&\sum _{k=1}^{K} \Big [ \sum _{l=1}^{L_k} \mu _{\mathcal {X}_{dkl}}(2) +2 \sum _{l=1}^{L_k} \mu _{\mathcal {X}_{dkl}}(1) \sum _{l'=l+1}^{L_k} \mu _{\mathcal {X}_{dkl'}}(1) \Big ] \\&+ 2 \sum _{k=1}^{K} \Big [ \sum _{l=1}^{L_k} \mu _{\mathcal {X}_{dkl}}(1) \Big ] \sum _{k'=k+1}^{K} \Big [ \sum _{l=1}^{L_{k'}} \mu _{\mathcal {X}_{dk'l}}(1) \Big ] . \end{aligned}$$
(53)

Then, the nth moment of \({\mathcal {T}_{d}} = h_{sd} + {\mathcal {Z}_d}\) is calculated as

$$\begin{aligned} \nonumber \mu _{\mathcal {T}_d}(n)&\triangleq \mathbb {E}\{(h_{sd} + \mathcal {Z}_d)^n\} = \mathbb {E}\left\{ \sum _{i=0}^{n} {n \atopwithdelims ()i} h_{sd}^i \mathcal {Z}_d^{n-i} \right\} \\&= \sum _{i=0}^{n} {n \atopwithdelims ()i} \mu _{h_{sd}}(i) \mu _{\mathcal {Z}_d}(n-i). \end{aligned}$$
(54)

Consequently, the first and second moments of \({\mathcal {T}_d}\) calculated from Eq. 54 are

$$\begin{aligned} \mu _{\mathcal {T}_d}(1) = \mu _{h_{sd}}(1) + \mu _{\mathcal {Z}_d}(1), \end{aligned}$$
(55)
$$\begin{aligned} \mu _{\mathcal {T}_d}(2) = \mu _{h_{sd}}(2) + \mu _{\mathcal {Z}_d}(2) + 2 \mu _{h_{sd}}(1) \mu _{\mathcal {Z}_d}(1). \end{aligned}$$
(56)

Similarly, the first and second moments of \({\mathcal {T}_e}\) are expressed as

$$\begin{aligned} \mu _{\mathcal {T}_e}(1) = \mu _{h_{se}}(1) + \mu _{\mathcal {Z}_e}(1), \end{aligned}$$
(57)
$$\begin{aligned} \mu _{\mathcal {T}_e}(2) = \mu _{h_{se}}(2) + \mu _{\mathcal {Z}_e}(2) + 2 \mu _{h_{se}}(1) \mu _{\mathcal {Z}_e}(1). \end{aligned}$$
(58)

Therefore, the CDFs of \({\mathcal {T}_d}\) and \({\mathcal {T}_e}\) are, respectively, given by

$$\begin{aligned} \nonumber F_{\mathcal {T}_d}(x) =&\frac{1}{\Gamma \Big ( \frac{[\mu _{\mathcal {T}_d}(1)]^2 }{\mu _{\mathcal {T}_d}(2) - [\mu _{\mathcal {T}_d}(1)]^2} \Big )} \\ \nonumber&\times \gamma \Bigg ( \frac{[\mu _{\mathcal {T}_d}(1)]^2 }{\mu _{\mathcal {T}_d}(2) - [\mu _{\mathcal {T}_d}(1)]^2}, \frac{\mu _{\mathcal {T}_d}(1) x}{\mu _{\mathcal {T}_d}(2) - [\mu _{\mathcal {T}_d}(1)]^2} \Bigg ) \\ \nonumber =&\frac{1}{\Gamma (\Xi _d)} \gamma ( \Xi _d, \Psi _d x ) \\ =&1-\frac{1}{\Gamma (\Xi _d)} \Gamma ( \Xi _d, \Psi _d x ) , \end{aligned}$$
(59)
$$\begin{aligned} F_{\mathcal {T}_e}(x) = 1- \frac{1}{\Gamma (\Xi _e)} \Gamma ( \Xi _e, \Psi _e x ) , \end{aligned}$$
(60)

where

$$\begin{aligned} \Xi _d =\frac{[\mu _{\mathcal {T}_d}(1)]^2 }{\mu _{\mathcal {T}_d}(2) - [\mu _{\mathcal {T}_d}(1)]^2}, \end{aligned}$$
(61)
$$\begin{aligned} \Psi _d =\frac{\mu _{\mathcal {T}_d}(1) }{\mu _{\mathcal {T}_d}(2) - [\mu _{\mathcal {T}_d}(1)]^2}, \end{aligned}$$
(62)
$$\begin{aligned} \Xi _e = \frac{[\mu _{\mathcal {T}_e}(1)]^2 }{\mu _{\mathcal {T}_e}(2) - [\mu _{\mathcal {T}_e}(1)]^2}, \end{aligned}$$
(63)
$$\begin{aligned} \Psi _e =\frac{\mu _{\mathcal {T}_e}(1) }{\mu _{\mathcal {T}_e}(2) - [\mu _{\mathcal {T}_e}(1)]^2}. \end{aligned}$$
(64)

Next, we can calculate the CDFs of \(\beta _d\) and \(\beta _e^{c2}\) from Eqs.  38 and 39 as

$$\begin{aligned} F_{\beta _d}(x) = \textrm{Pr} \left\{ \mathcal {T}_{d}^2< \frac{x}{\rho _d} \right\} = \textrm{Pr} \left\{ \mathcal {T}_{d} < \sqrt{\frac{x}{\rho _d}} \right\} = F_{\mathcal {T}_{d}}\Big (\sqrt{\frac{x}{\rho _d}}\Big ), \end{aligned}$$
(65)
$$\begin{aligned} F_{\beta _e^{c2}}(x) = \textrm{Pr} \left\{ \mathcal {T}_{e}^2< \frac{x}{\rho _e} \right\} = \textrm{Pr} \left\{ \mathcal {T}_{e} < \sqrt{\frac{x}{\rho _e}} \right\} = F_{\mathcal {T}_{e}}\Big (\sqrt{\frac{x}{\rho _e}}\Big ). \end{aligned}$$
(66)

Applying Eqs. 59 and 60,65, and 66 become Eqs. 26 and 28, respectively. The proof is thus complete.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, B.C., Van, QN., Dung, L.T. et al. Secrecy Performance of Multi-RIS-Assisted Wireless Systems. Mobile Netw Appl 28, 1206–1219 (2023). https://doi.org/10.1007/s11036-023-02125-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-023-02125-7

Keywords

Navigation