Skip to main content
Log in

SDSN: Software-defined Space Networking — Architecture and Routing Algorithm

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Space networking has captured increasing attentions because of its wide application scenarios. Facing to the technical challenges of space networking including topology alteration, non-realtime condition capture and control, and instable communication and control reliability, this article introduce software-defined networking (SDN) into space networking and proposes software-defined space networking, named SDSN. The architecture and the detailed strategy based routing algorithm are designed. SDSN has three key features: the predeterminate rules, strategy based routing algorithm, and redundant space-ground controlling strategy. These features address the three challenges pointedly. The simulation results confirm the advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Radhakrishnan R, Edmonson WW, Afghah F, Rodriguez-Osorio RM, Pinto F, Burleigh SC (2016) Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Commun Surv Tutorials 18(4):2442–2473. Fourthquarter

    Article  Google Scholar 

  2. Chitre P, Yegenoglu F (1999) Next-generation satellite networks: architectures and implementations. IEEE Commun Mag 37(3):30–36

    Article  Google Scholar 

  3. Kreutz D, Ramos FMV, Verssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

    Article  Google Scholar 

  4. Nunes BAA, Mendonca M, Nguyen X, Obraczka K, Turletti T (2014) A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Commun Surv Tutorials 16(3):1617–1634

    Article  Google Scholar 

  5. Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos AV (2015) Software-defined and virtualized future mobile and wireless networks: a survey. Mobile Networks and Applications 20(1):4–18

    Article  Google Scholar 

  6. Haque IT, Abu-Ghazaleh N (2016) Wireless software defined networking: a survey and taxonomy. IEEE Commun Surv Tutorials 18(4):2713–2737. Fourthquarter

    Article  Google Scholar 

  7. Niu Y, Li Y, Chen M, Jin D, Chen S (2016) A cross-layer design for a software-defined millimeter-wave mobile broadband system. IEEE Commun Mag 54(2):124–130

    Article  Google Scholar 

  8. Arslan MY, Sundaresan K, Rangarajan S (2015) Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun Mag 53(1):150–156

    Article  Google Scholar 

  9. Yang M, Li Y, Hu L, Li B, Jin D, Chen S, Yan Z (2015) Cross-layer software-defined 5g network. Mobile Networks and Applications 20(3):400–409

    Article  Google Scholar 

  10. Yang M, Li Y, Li B, Jin D, Chen S (2016) Service-oriented 5g network architecture: an end-to-end software defining approach. Int J Commun Syst 29(10):1645–1657

    Article  Google Scholar 

  11. Yiakoumis Y, Bansal M, Katti S, McKeown N (2014) SDN for dense wifi networks. In: Presented as part of the Open Networking Summit 2014 (ONS 2014), Santa Clara, USENIX

  12. Schulz-Zander J, Mayer C, Ciobotaru B, Schmid S, Feldmann A (2015) Opensdwn: Programmatic control over home and enterprise wifi. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15, ACM, New York, pp 16:1–16:12

  13. Kalkan K, Zeadally S (2018) Securing internet of things with software defined networking. IEEE Commun Mag 56(9):186–192

    Article  Google Scholar 

  14. Bizanis N, Kuipers FA (2016) Sdn and virtualization solutions for the internet of things: a survey. IEEE Access 4:5591–5606

    Article  Google Scholar 

  15. Ferrus R, Koumaras H, Sallent O, Agapiou G, Rasheed T, Kourtis M-A, Boustie C, Gélard P, Ahmed T (2016) Sdn/nfv-enabled satellite communications networks: Opportunities, scenarios and challenges, vol 18. Special Issue on Radio Access Network Architectures and Resource Management for 5G

  16. Bertaux L, Medjiah S, Berthou P, Abdellatif S, Hakiri A, Gelard P, Planchou F, Bruyere M (2015) Software defined networking and virtualization for broadband satellite networks. IEEE Commun Mag 53(3):54–60

    Article  Google Scholar 

  17. Li T, Zhou H, Luo H, Xu Q, Ye Y (2016) Using sdn and nfv to implement satellite communication networks. In: 2016 International Conference on Networking and Network Applications (naNA), pp 131–134

  18. Bao J, Zhao B, Yu W, Feng Z, Wu C, Gong Z (2014) Opensan: a software-defined satellite network architecture. SIGCOMM Comput Commun Rev 44(4):347–348

    Article  Google Scholar 

  19. Du P, Nazari S, Mena J, Fan R, Gerla M, Gupta R (2016) Multipath tcp in sdn-enabled leo satellite networks. In: MILCOM 2016 - 2016 IEEE Military Communications Conference, pp 354–359

  20. Mongelli M, De Cola T, Cello M, Marchese M, Davoli F (2016) Feeder-link outage prediction algorithms for sdn-based high-throughput satellite systems. In: 2016 IEEE International Conference on Communications (ICC), pp 1–6

  21. Nazari S, Du P, Gerla M, Hoffmann C, Kim JH, Capone A (2016) Software defined naval network for satellite communications (sdn-sat). In: MILCOM 2016 - 2016 IEEE Military Communications Conference, pp 360–366

  22. Gounder VV, Prakash R, Abu-Amara H (April 1999) Routing in leo-based satellite networks. pp 12–13

  23. Fischer T, Engel D, Basin D (2008) Topology dynamics and routing for predictable mobile networks. pp 207–217

  24. Huang L, Huang W, Liu F, Wang J, Su Y (2016) An optimized snapshot division strategy for satellite network in gnss. IEEE Commun Lett 20(12):2406–2409

    Article  Google Scholar 

  25. Rosenberg C, Mauger R (1997) Qos guarantees for multimedia services on a tdma-based satellite network. IEEE Commun Mag 35(7):56–65

    Article  Google Scholar 

  26. Lu Y, Zhao Y, Sun F (2013) Virtual topology for leo satellite networks based on earth-fixed footprint mode. IEEE Commun Lett 17(2):35–360

    Article  Google Scholar 

  27. Lu F, Sun D, Qin Y, Zhao Y (2016) Complexity of routing in store-and-forward leo satellite networks. IEEE Commun Lett 20(1):89–92

    Article  Google Scholar 

  28. Hashimoto Y (1998) Design of ip-based routing in a leo satellite network. In: HPSR. Proc. Of the 3rd intl workshop on satellite-based information services, ACM, New York, pp 81–88

  29. Wu F, Jin Y, Fu J, Luo T, Zhang Z, Hu G (2015) Hop-limited adaptive routing in packet-switched non-geostationary satellite networks. IEICE Trans Commun 98:411–424

    Google Scholar 

  30. Zheng Y, Zhao S, Liu Y, Li Y et al (2017) Weighted algebraic connectivity maximization for optical satellite networks. IEEE Access 5:6885–6893

    Article  Google Scholar 

  31. Chen C (2003) A QoS-based routing algorithm in multimedia satellite networks. In: Proceedings of the VTC’03-fall conference, pp 2703–2707

  32. Muhammad T, Cola M, Giambene G (2016) Qos support in sgd-based high throughput satellite networks. IEEE Trans Wirel Commun 15(12):8477–8491

    Article  Google Scholar 

  33. Li F, Jin H, Luo S, Yu T, Zhou H (2018) Service: A software defined framework for integrated space-terrestrial satellite communication. IEEE Trans Mob Comput 17(3):703–716

    Article  Google Scholar 

  34. Papapetrou F, Pavlidou E, Karapantazis S (2007) Distributed on-demand routing for leo satellite systems 51:4356–4376

    Google Scholar 

  35. Ji P, Zhao D, Wang X, Liu L (2015) A-star algorithm based on-demand routing protocol for hierarchical leo/meo satellite networks. In: 2015 IEEE International Conference on Big Data: Santa Clara, CA, USA, pp 1545–1549

  36. Sparka H., Freimann A., Scheuermann B., Schilling K., Kondrateva O., D?bler H (2018) Throughput-optimal joint routing and scheduling for low-earth-orbit satellite networks. In: 2018 14Th annual conference on wireless on-demand network systems and services (WONS), pp 59–66

  37. Akyildiz M, Bender I, Ekici E (2002) Mlsr: A novel routing algorithm for multilayered satellite ip networks 10:411–424

    Google Scholar 

  38. Tang F, Kuang L et al (2016) An improved multi-path routing algorithm for hybrid leo-meo satellite networks. In: 2016 IEEE Trustcom/bigdataSE/ISPA: Tianjin, China, pp 1101–1105

  39. Zhou H, Zhou H et al (2018) Distributed contact plan design for multi-layer satellite-terrestrial network 15:23–34

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjiao Xie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T. SDSN: Software-defined Space Networking — Architecture and Routing Algorithm. Mobile Netw Appl 24, 1542–1554 (2019). https://doi.org/10.1007/s11036-019-01275-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01275-x

Keywords

Navigation