Skip to main content

Advertisement

Log in

Performance Analysis of MIMO SWIPT Relay Network with Imperfect CSI

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a dual-hop multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) relay network, where the source node (SN) uses a transmission antenna selection (TAS) scheme to concurrently send information and energy to the single-antenna relay node (RN). This helps to utilize the harvested energy to forward the received signal. In addition, the destination node (DN) employs the maximum ratio combining (MRC) scheme to process this forwarded signal. The performance of this MIMO SWIPT relay system is investigated in imperfect channel state information (CSI) condition. Specifically, we derive the exact and approximate closed-form expressions for the outage probability, the average capacity, and the symbol error probability (SEP). This is the first time the exact and approximate formulas for the SEP of the energy harvesting networks are investigated. The Monte Carlo simulation results are provided to demonstrate the relevance of the developed analytical results, showing that the system’s performance is significantly impacted by the CSI imperfection, the number of antennas, and the energy harvesting duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. 6G will start entering the market by 2026 [1]

  2. The proposed analysis approach can also be applied to the power spitting EH model [6].

  3. The covariance between x and y is given as [35] \(\rho =\frac {cov(x,y)}{{var(x)var(y)}}\).

  4. Recently, there are several articles investigating EH from the co-channel interference deployed in the future 5G network, and EH from the interference in IoT network.

  5. We assume that all energy harvested from the RF signals is consumed by the relay for forwarding the information to the destination.

  6. To obtain (8), we use the probability that any k of the N elements are below y. Hence, we need to enumerate the number of combinations of k out of N variables. This is merely the binomial coefficient. Then, we differentiate the result with respect to y.

  7. We consider the MRC scheme employed at D since MRC always outperforms any other diversity combining schemes.

Abbreviations

P r(.):

Probability function

f U(u):

Probability density function (PDF)

F U(u):

Cumulative distribution function (CDF)

Γ(⋅),:

Gamma function

\({\Gamma } \left ({ \cdot , \cdot } \right )\) :

Incomplete gamma function

\(\mathcal {CN}(\mu ,\sigma ^{2})\) :

Circularly symmetric complex normal distribution with mean \(\mu \) and variance \(\sigma ^{2}\)

\(\mathbb {E}\left \{\cdot \right \}\) :

Statistical expectation operator

\({\mathcal {K}}_{n}\left (\cdot \right )\) :

Modified Bessel function of the second kind of order n

\(E_{n}\left (. \right )\) :

Integral exponential function of order n

W ,μ(.):

Whittaker function [32]

References

  1. David K, Berndt H (2018) 6G vision and requirements: is there any need for beyond 5G. IEEE Veh Technol Mag (13)3:72–80

  2. Nguyen LD (2018) Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Trans Ind Netw Intell Syst 5:14

    Google Scholar 

  3. Varshney LR (2008) Transporting information and energy simultaneously. In: Proceedings of 2008 IEEE international symposium on information theory. IEEE, pp 1612–1616

  4. Lu X, Wang P, Niyato D, Kim DI, Han Z (2015) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutorials 17(2):757–789

    Article  Google Scholar 

  5. Zhang R, Ho CK (2013) MIMO Broadcasting for simultaneous wireless information and power transfer. IEEE Trans Commun 12(5):1989–2001

    Google Scholar 

  6. Zhou X, Zhang R, Ho CK (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans Commun 61(11):4754–4767

    Article  Google Scholar 

  7. Ding Z, Perlaza SM, Esnaola I, Poor HV (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans Wirel Commun 13(2):846–860

    Article  Google Scholar 

  8. Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636

    Article  Google Scholar 

  9. Do NT, da Costa DB, Duong TQ, Bao VNQ, An B (2017) Exploiting direct links in multiuser multirelay SWIPT cooperative networks with opportunistic scheduling. IEEE Trans Wirel Commun 16(8):5410–5427

    Article  Google Scholar 

  10. Dong Y, Hossain MJ, Cheng J (2016) Performance of wireless powered amplify and forward relaying over nakagami-m fading channels with nonlinear energy harvester. IEEE Commun Lett 20(4):672–675

    Article  Google Scholar 

  11. Do TN, da Costa DB, Duong TQ, An B (2018) Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans Green Commun Netw 2(1):49–62

    Article  Google Scholar 

  12. Do NT, Da Costa DB, Duong TQ, An B (2017) A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun Lett 21(3):664–667

    Article  Google Scholar 

  13. Hoang TM, Van Son V, Dinh NC, Hiep PT (2018) Optimizing duration of energy harvesting for downlink NOMA full-duplex over Nakagami-m fading channel. AEU-Int J Electron Commun 95:199–206

    Article  Google Scholar 

  14. Hoang TM, Tan NT, Hoang NH, Hiep PT Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting, Wireless Networks, pp 1–11. https://doi.org/10.1007/s11276-018-1746-8

  15. Radaydeh RM (2009) Impact of delayed arbitrary transmit antenna selection on the performance of rectangular QAM with receive MRC in fading channels. IEEE Commun Lett 6:13

    Google Scholar 

  16. Suraweera HA, Soysa M, Tellambura C, Garg HK (2010) Performance analysis of partial relay selection with feedback delay. IEEE Signal Process Lett 17(6):531–534

    Article  Google Scholar 

  17. Michalopoulos DS, Chatzidiamantis ND, Schober R, Karagiannidis GK (2011) Relay selection with outdated channel estimates in Nakagami-m fading. In: Proceedings of 2011 IEEE international conference on communications (ICC). IEEE, pp 1–6

  18. Ferdinand NS, da Costa DB, Latva-aho M (2013) Effects of outdated CSI on the secrecy performance of MISO wiretap channels with transmit antenna selection. IEEE Commun Lett 17(5):864–867

    Article  Google Scholar 

  19. Amarasuriya G, Larsson EG, Poor HV (2016) Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Trans Wirel Commun 15(6):3837–3855

    Article  Google Scholar 

  20. Zhao L, Wang X, Zheng K (2016) Downlink hybrid information and energy transfer with massive MIMO. IEEE Trans Wirel Commun 15(2):1309–1322

    Article  Google Scholar 

  21. Shi Q, Xu W, Wu J, Song E, Wang Y (2015) Secure beamforming for MIMO broadcasting with wireless information and power transfer. IEEE Trans Wirel Commun 14(5):2841–2853

    Article  Google Scholar 

  22. Zhang Q, Li Q, Qin J (2016) Beamforming design for OSTBC-based AF-MIMO two-way relay networks with simultaneous wireless information and power transfer. IEEE Trans Veh Commun 65(9):7285–7296

    Article  Google Scholar 

  23. Bao VNQ, Duong TQ, Tellambura C (2013) On the performance of cognitive underlay multihop networks with imperfect channel state information. IEEE Trans Wirel Commun 61(12):4864–4873

    Article  Google Scholar 

  24. Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK (2017) Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Trans Veh Commun 66(8):7599–7603

    Article  Google Scholar 

  25. Huang Y, Al-Qahtani FS, Duong TQ, Wang J (2015) Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI. IEEE Trans Wirel Commun 63(8):2959–2971

    Article  Google Scholar 

  26. Lee K, Hong J-P (2016) Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Trans Veh Commun 65(4):2775– 2780

    Article  Google Scholar 

  27. Benkhelifa F, Salem AS, Alouini M-S (2016) Rate maximization in MIMO decode-and-forward communications with an EH relay and possibly imperfect CSI. IEEE Trans Wirel Commun 64(11):4534–4549

    Article  Google Scholar 

  28. Prasad B, Roy SD, Kundu S (2015) Secondary throughput in underlay cognitive radio network with imperfect CSI and energy harvesting relay. In: Proceedings of 2015 IEEE international conference on advanced networks and telecommunications systems (ANTS). IEEE, pp 1–6

  29. Zhang J, Pan G (2016) Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access 4:7046–7053

    Article  Google Scholar 

  30. Yilmaz A, Kucur O (2012) Performance of transmit antenna selection and maximal-ratio combining in dual hop amplify-and-forward relay network over Nakagami-m fading channels. Wirel Pers Commun 3(67):485–503

    Article  Google Scholar 

  31. Mohammadi M, Chalise BK, Suraweera HA, Zhong C, Zheng G, Krikidis I (2016) Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Trans Commun 64 (4):1769–1785

    Article  Google Scholar 

  32. Gradshteyn IS, Ryzhik IM (2014) Table of integrals, series, and products. Academic Press, Cambridge

    MATH  Google Scholar 

  33. Rajesh R, Sharma V, Viswanath P (2014) Capacity of gaussian channels with energy harvesting and processing cost. IEEE Trans Inf Theory 60(5):2563–2575

    Article  MathSciNet  MATH  Google Scholar 

  34. Suraweera HA, Smith PJ, Shafi M (2010) Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Commun 59(4):1811–1822

    Article  Google Scholar 

  35. Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, New York

    Google Scholar 

  36. Ahn KS, Heath JRW (2009) Performance analysis of maximum ratio combining with imperfect channel estimation in the presence of cochannel interferences. IEEE Trans Wirel Commun 8(3):1080–1085

    Article  Google Scholar 

  37. Simon MK, Alouini M-S (2002) Digital communication over generalized fading channels: a unified approach to performance analysis. Wiley, New York

    Google Scholar 

  38. Van Khuong H, Kong H-Y (2006) General expression for eps of a sum of independent exponential random variables. IEEE Commun Lett 10(3):159–161

    Article  Google Scholar 

  39. Tang J, Zhang X (2006) Transmit selection diversity with maximal-ratio combining for multicarrier DS-CDMA wireless networks over Nakagami-m fading channels. IEEE J Sel Areas Commun 24(1):104–112

    Article  MathSciNet  Google Scholar 

  40. Bao VNQ, Kong HY (2010) Performance analysis of decode-and-forward relaying with partial relay selection for multihop transmission over Rayleigh fading channels. J Commun Netw 12(5):433–441

    Article  Google Scholar 

  41. Laneman JN, Tse DN, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080

    Article  MathSciNet  MATH  Google Scholar 

  42. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New York

    MATH  Google Scholar 

  43. Chen Y, Tellambura C (2004) Distribution functions of selection combiner output in equally correlated Rayleigh, Rician, and Nakagami-m fading channels. IEEE Trans Wirel Commun 52(11):1948–1956

    Article  Google Scholar 

  44. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le The Dung.

Appendices

Appendix A

Aiming at the closed-form formulations for \(I_{2}^{\text {Exact}}\) and \(I_{2}^{\text {Appro}}\), we start by determining the corresponding constituent integral as follows: Substituting (23)–(29) and carrying out some manipulations, we have

$$\begin{array}{@{}rcl@{}} I_{2}^{\text{Appro}} &= &\frac{{a\sqrt b} }{{2\sqrt \pi} }{\sum\limits_{n = 1}^{{N_{S}}} {\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} \binom{N_{\text{S}}}{n}}} \frac{{n{{\left( { - 1} \right)}^{n + 1}}}}{{{\lambda_{1}}\delta} }2{\left( {\frac{{\phi {\lambda_{1}}\delta} }{{n{\lambda_{2}}}}} \right)^{\frac{{1 - k}}{2}}}\\ && \times \int\limits_{0}^{\infty} {\frac{{{e^{- bx}}}}{{\sqrt x} }{x^{\frac{{1 - k}}{2}}} {{\left( {\frac{{\phi x}}{{{\lambda_{2}}}}} \right)}^{k}}{ {\mathcal{K}}_{1 - k}}\left( {2\sqrt {\frac{{n\phi x}}{{{\lambda_{1}}{\lambda_{2}}\delta} }}} \right)dx}.\\ \end{array} $$
(39)

With the help of [32, 6.643.3], \(I_{2}^{\text {Appro}}\) is then obtained as in Eq. 32.

Similarly, for the case of \(I_{2}^{\text {Exact}}\), substituting the exact CDF in Eqs. 2429, it hence is recast as

$$\begin{array}{@{}rcl@{}} {I_{2}^{\text{Exact}}} &= &\frac{{a\sqrt b} }{{2\sqrt \pi} }\!\!\!\int\limits_{0}^{\infty}{\frac{{{e^{- bx}}}}{{\sqrt x} }\sum\limits_{n = 1}^{{N_{S}}}{\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} {\sum\limits_{q = 0}^{{\mathcal{N}}_{t}}{\frac{{n{{\left( { - 1} \right)}^{n + 1}}}}{{q!k!}}{{\left( {\frac{\phi} {{{{\Omega}_{2}}}}} \right)}^{k + q}}}} } } \\ && \times \binom{N_{\text{S}}}{n} \frac{{{P_{S}}^{k + q - 1}{{\left( { - 1} \right)}^{q}}}}{{{{\Omega}_{1}}\delta} }x{E_{k + q}}\left( {\frac{{nx}}{{{{\Omega}_{1}}\delta {P_{S}}}}} \right)dx.\\ \end{array} $$
(40)

With the help of [42, 5.1.45], and using \({E_{n}}\left (z \right ) = {z^{n - 1}}{\Gamma } \left ({1 - n, z} \right )\), \(I_{2}^{\text {Exact}}\) can then be recast as

$$\begin{array}{@{}rcl@{}} {I_{2}^{\text{Exact}}}& = &\frac{{a\sqrt b} }{{2\sqrt \pi} }\sum\limits_{n = 1}^{N_{\mathrm{S}}} {\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} {\sum\limits_{q = 0}^{{\mathcal{N}}_{t}}{\frac{{n{{\left( { - 1} \right)}^{n + 1}}{{\left( { - 1} \right)}^{q}}}}{{q!k!}}}} } \\ &&\times \binom{N_{\text{S}}}{n}\frac{{1}}{{{{\Omega}_{1}}\delta} }{\left( {\frac{\phi} {{{{\Omega}_{2}}}}} \right)^{k + q}}{\left( {\frac{n}{{{{\Omega}_{1}}\delta} }} \right)^{k + q - 1}} \\ &&\times \underbrace {\int\limits_{0}^{\infty} {{e^{- bx}}{x^{k + q + \frac{1}{2} - 1}}{\Gamma} \left( {1 - k - q,\frac{{nx}}{{{{\Omega}_{1}}\delta {P_{S}}}}} \right)dx} }_{{\mathcal{I}}\left( x \right)}.\\ \end{array} $$
(41)

For calculating \({\mathcal {I}}\left (x \right )\), [32, 6.455.1] is applied, and after some manipulations, we have

$$ {\mathcal{I}}\left( x \right) = \frac{{{\alpha^{v}}{\Gamma} \left( {\mu + v} \right)}}{{\mu {{\left( {\alpha + \beta} \right)}^{\mu + v}}}}{}_{2}{F_{1}}\left( {1, \mu + v;\mu + 1; \frac{\beta} {{\alpha + \beta} }} \right). $$
(42)

Using the [32, 3.361.2], we then obtain the closed-form formulation of \({I_{2}^{\text {Exact}}}\).

Appendix B

Starting from statistical expectation formulation \({\mathbb {E}}\{\gamma _{\text {e2e}}\} = \int \limits _{0}^{\infty } \left [1- F_{\gamma _{\text {e2e}}}(x)\right ]dx\) with the CDF of (23), after some manipulations, we can rewrite \({\mathbb {E}}\{\gamma _{\text {e2e}}\}\) as

$$\begin{array}{@{}rcl@{}} {\mathbb{E}}\{\gamma_{\text{e2e}}\}&= &{\sum\limits_{n = 1}^{{N_{\text{S}}}} {\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} {\binom{N_{\text{S}}}{n}\frac{1}{{k!}}}} } \frac{{n{{\left( { - 1} \right)}^{n + 1}}}}{{{\lambda_{1}}\delta} } {\left( {\frac{\phi} {{{\lambda_{2}}}}} \right)^{k}}\\ &&\times 2{\left( {\frac{{\phi {\lambda_{1}}\delta} }{{n{\lambda_{2}}}}} \right)^{\frac{{1 - k}}{2}}}\int\limits_{0}^{\infty} {{x^{\frac{{k + 1}}{2}}}{{\mathcal{K}}_{1 - k}}\left( {\sqrt {\frac{{4n\phi x}}{{{\lambda_{1}}{\lambda_{2}}\delta} }}} \right)} dx.\\ \end{array} $$
(43)

Let \(\sqrt x = u\) and using [32, 6.561.16], we then have \(\mathbb {E}\{\gamma _{\text {e2e}}\}\) expressed as

$$\begin{array}{@{}rcl@{}} {\mathbb{E}}\left\{ {{\gamma_{{\text{e2e}}}}} \right\} &=&{\sum\limits_{n = 1}^{N_{\mathrm{S}}} {\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} {\binom{N_{\text{S}}}{n}}} }2{\left( {\frac{{{\lambda_{2}}\delta} }{n}} \right)^{\frac{{1 - k}}{2}}}{2^{k + 2}}{\left( {\frac{{1 - \alpha} }{{2\alpha \eta {P_{S}}}}} \right)^{\frac{{k + 1}}{2}}}\\ && \times {\left( {\frac{{8n{\lambda_{2}}\left( {1 - \alpha} \right)}}{{\delta 2\alpha \eta {P_{S}}}}} \right)^{\frac{{ - 3 -k}}{2}}}{\Gamma} \left( {\frac{1}{2}} \right){\Gamma} \!\left( \!{1 + \frac{1}{2}} \right). \end{array} $$
(44)

Substituting (44)–(36), we then have the average capacity formulation of Eq. 37.

Similarly, the average end-to-end SNR is given by

$$\begin{array}{@{}rcl@{}} {\mathbb{E}}\left\{ {{\gamma_{{\text{e2e}}}}} \right\} &= &\sum\limits_{n = 1}^{{N_{\text{S}}}}{\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} { \frac{1}{{k!}}}} \frac{{n{{\left( { - 1} \right)}^{n + 1}}}}{{{\lambda_{1}}\delta} }\\ &&\times\sum\limits_{q = 0}^{{\mathcal{N}}_{t}}{\frac{{{{\left( { - 1} \right)}^{q}}{P_{S}}^{k + q - 1}}}{{q!}}} \!\!\!{\left( {\frac{\phi} {{{\lambda_{2}}}}} \right)^{k + q}}\\ &&\times\int\limits_{0}^{\infty} {x{E_{k + q}}\left( {\frac{{nx}}{{{P_{S}}{\lambda_{1}}\delta} }} \right)dx}. \end{array} $$
(45)

With the help of [42, 5.1.45], we can rewrite (45) as

$$\begin{array}{@{}rcl@{}} {\mathbb{E}}\left\{ {{\gamma_{{\text{e2e}}}}} \right\}&=&\sum\limits_{n = 1}^{{N_{\text{S}}}} {\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} {\sum\limits_{q = 0}^{{\mathcal{N}}_{t}}{\frac{{{{\left( { - 1} \right)}^{q}}n{{\left( { - 1} \right)}^{n - 1}}}}{{{\lambda_{1}}\delta k!q!}}}} } \\ &&{\times\binom{N_{\text{S}}}{n}\left( {\frac{\phi} {{{\lambda_{2}}}}} \right)^{k + q}}{\left( {\frac{n}{{{\lambda_{1}}\delta} }} \right)^{k + q - 1}}\\ &&\times\int\limits_{0}^{\infty} {{x^{k + q}}{\Gamma} \left( {1 - \left( {k + q} \right),\frac{{nx}}{{{P_{S}}{\lambda_{1}}\delta} }} \right)dx}. \end{array} $$
(46)

Thank to the help of [42, 6.5.37], and after some modifications, we have

$$\begin{array}{@{}rcl@{}} \mathbb{E}\{ \gamma_{\text{e2e}}\}& =& \sum\limits_{n = 1}^{N_{\mathrm{S}}}\sum\limits_{k = 0}^{N_{\mathrm{D}} - 1} \binom{N_{\mathrm{S}}}{n}\frac{n(-1)^{n - 1}}{\lambda_{1}\delta k!}\left( \frac{n}{\lambda_{1}\delta} \right)^{- 2} \\ &&\times \sum\limits_{q = 0}^{{\mathcal{N}}_{t}}\frac{(-1)^{q}}{q!(k + q + 1)}\left( \frac{1}{P_{\mathrm{S}}} \right)^{- k - q - 1}\left( \frac{\phi} {\lambda_{2}}\right)^{k + q}.\\ \end{array} $$
(47)

Replacing (47)–(36), we then obtain the average capacity as in Eq. 38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, T.M., Tran, X.N., Thanh, N. et al. Performance Analysis of MIMO SWIPT Relay Network with Imperfect CSI. Mobile Netw Appl 24, 630–642 (2019). https://doi.org/10.1007/s11036-018-1163-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-1163-3

Keywords

Navigation