Skip to main content
Log in

From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salinity stress is a critical challenge in crop production and requires innovative strategies to enhance the salt tolerance of plants. Insights from mangrove species, which are renowned for their adaptability to high-salinity environments, provides valuable genetic targets and resources for improving crops. A significant hurdle in salinity stress is the excessive uptake of sodium ions (Na+) by plant roots, causing disruptions in cellular balance, nutrient deficiencies, and hampered growth. Specific ion transporters and channels play crucial roles in maintaining a low Na+/K+ ratio in root cells which is pivotal for salt tolerance. The family of high-affinity potassium transporters, recently characterized in Avicennia officinalis, contributes to K+ homeostasis in transgenic Arabidopsis plants even under high-salt conditions. The salt overly sensitive pathway and genes related to vacuolar-type H+-ATPases hold promise for expelling cytosolic Na+ and sequestering Na+ in transgenic plants, respectively. Aquaporins contribute to mangroves’ adaptation to saline environments by regulating water uptake, transpiration, and osmotic balance. Antioxidant enzymes mitigate oxidative damage, whereas genes regulating osmolytes, such as glycine betaine and proline, provide osmoprotection. Mangroves exhibit increased expression of stress-responsive transcription factors such as MYB, NAC, and CBFs under high salinity. Moreover, genes involved in various metabolic pathways, including jasmonate synthesis, triterpenoid production, and protein stability under salt stress, have been identified. This review highlights the potential of mangrove genes to enhance salt tolerance of crops. Further research is imperative to fully comprehend and apply these genes to crop breeding to improve salinity resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generatedor analyzed during the current review study.

References

  1. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  2. Lawrence J, Mackey B, Chiew F, Costello MJ, Hennessy K, Lansbury N et al (2022) Australasia. In: Pörtner H-O, Roberts DC, Tignor M et al (eds) Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, pp 1581–1688. https://doi.org/10.1017/9781009325844.013.

    Chapter  Google Scholar 

  3. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221. https://doi.org/10.1093/aob/mct205

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhu JK (2016) Abiotic Stress Signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:435515. https://doi.org/10.3389/fpls.2019.00080

    Article  Google Scholar 

  6. Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:105882. https://doi.org/10.3389/fpls.2014.00467

    Article  Google Scholar 

  7. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539. https://doi.org/10.1046/j.1365-313x.2002.01309.x

    Article  CAS  PubMed  Google Scholar 

  8. Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331. https://doi.org/10.1093/aob/mcu267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nizam A, Meera SP, Kumar A (2021) Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 25:103547. https://doi.org/10.1016/j.isci.2021.103547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64. https://doi.org/10.1146/annurev.es.05.110174.000351

    Article  Google Scholar 

  11. Nabeelah Bibi S, Fawzi MM, Gokhan Z, Rajesh J, Nadeem N, Kannan RRR et al (2019) Ethnopharmacology, phytochemistry, and global distribution of mangroves - a comprehensive review. Mar Drugs 17:231. https://doi.org/10.3390/md17040231

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251. https://doi.org/10.1016/S0065-2881(01)40003-4

    Article  Google Scholar 

  13. Zhou Y, Wen L, Liao L, Lin S, Zheng E, Li Y, Zhang Y (2022) Comparative transcriptome analysis unveiling reactive oxygen species scavenging system of Sonneratia caseolaris under salinity stress. Front Plant Sci 13:953450. https://doi.org/10.3389/fpls.2022.953450

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prashanth SR, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291. https://doi.org/10.1007/s11248-007-9099-6

    Article  CAS  PubMed  Google Scholar 

  15. Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329. https://doi.org/10.1016/j.biochi.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ganpudi A, Parida A (2012) A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot 63:4549–4561. https://doi.org/10.1093/jxb/ers135

    Article  CAS  PubMed  Google Scholar 

  17. Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R et al (2015) Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia Candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front Plant Sci 5:23. https://doi.org/10.3389/fpls.2015.00023

    Article  Google Scholar 

  18. Xu S, He Z, Zhang Z, Guo Z, Guo W, Lyu H, Shi S (2017) The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci Rev 4:721–734. https://doi.org/10.1093/nsr/nwx065

    Article  CAS  PubMed  Google Scholar 

  19. Friis G, Vizueta J, Smith EG, Nelson DR, Khraiwesh B, Qudeimat E et al (2021) A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3 (Bethesda) 11:jkaa025. https://doi.org/10.1093/g3journal/jkaa025

  20. Natarajan P, Murugesan AK, Govindan G, Gopalakrishnan A, Kumar R, Duraisamy P et al (2021) A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun Biol 4:851. https://doi.org/10.1038/s42003-021-02384-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  22. Plett DC, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626. https://doi.org/10.1111/j.1365-3040.2009.02086.x

    Article  CAS  Google Scholar 

  23. Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13. https://doi.org/10.1016/j.plantsci.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  24. Assaha DV, Ueda A, Saneoka H, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:275169. https://doi.org/10.3389/fphys.2017.00509

    Article  Google Scholar 

  25. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:209523. https://doi.org/10.3389/fpls.2016.01787

    Article  Google Scholar 

  27. Ali A, Raddatz N, Pardo JM, Yun DJ (2021) HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. Physiol Plant 171:546–558. https://doi.org/10.1111/ppl.13166

    Article  CAS  PubMed  Google Scholar 

  28. Ali Z, Park HC, Ali A, Oh H, Aman R, Kropornicka A et al (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158:1463–1474. https://doi.org/10.1104/pp.111.193110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ali A, Raddatz N, Aman R, Kim S, Park HC, Jan M et al (2016) A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiol 171:2112–2126. https://doi.org/10.1104/pp.16.00569

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ali A, Khan IU, Jan M, Khan HA, Hussain S, Nisar M, Chung WS, Yun DJ (2018) The high-affinity potassium transporter EpHKT1;2 from the extremophile Eutrema parvula mediates salt tolerance. Front Plant Sci 9:1108. https://doi.org/10.3389/fpls.2018.01108

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krishnamurthy P, Mohanty B, Wijaya E, Lee D, Lim T, Lin Q, Kumar PP (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia Officinalis. Sci Rep 7:1–19. https://doi.org/10.1038/s41598-017-10730-2

    Article  CAS  Google Scholar 

  32. Krishnamurthy P, Amzah NRB, Kumar PP (2023) High-affinity potassium transporter from a mangrove tree Avicennia Officinalis increases salinity tolerance of Arabidopsis thaliana. Plant Sci 336:111841. https://doi.org/10.1016/j.plantsci.2023.111841

    Article  CAS  PubMed  Google Scholar 

  33. Shi H, Quintero FJ, Pardo JM, Zhu J (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477. https://doi.org/10.1105/tpc.010371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiu Q, Guo Y, Dietrich MA, Schumaker KS, Zhu J (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441. https://doi.org/10.1073/pnas.122224699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quintero FJ, Villalta I, Jiang X, Kim W, Ali Z, Fujii H et al (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA 108:2611–2616. https://doi.org/10.1073/pnas.1018921108

    Article  PubMed  PubMed Central  Google Scholar 

  36. Halfter U, Ishitani M, Zhu J (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci 97:3735–3740. https://doi.org/10.1073/pnas.97.7.3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong D, Guo Y, Schumaker KS, Zhu JK (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134:919–926. https://doi.org/10.1104/pp.103.037440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Y, Yin X, Duan R, Hao G, Guo J, Jiang X (2015) SpAHA1 and SpSOS1 coordinate in transgenic yeast to improve salt tolerance. PLoS ONE 10:e0137447. https://doi.org/10.1371/journal.pone.0137447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan Y, Yin X, Xie Q, Xia Y, Wang Z, Song J, Zhou Y, Jiang X (2019) Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC Plant Biol 19(1):74. https://doi.org/10.1186/s12870-019-1680-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Zhu Y, Li W et al (2023) Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast. Acta Physiol Plant 45:58. https://doi.org/10.1007/s11738-023-03518-7

    Article  CAS  Google Scholar 

  41. Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M (2019) Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc Jpn Acad Ser B 95:261–277. https://doi.org/10.2183/pjab.95.018

    Article  CAS  Google Scholar 

  42. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980. https://doi.org/10.1093/jexbot/52.363.1969

    Article  CAS  PubMed  Google Scholar 

  43. Ho C-L, Nguyen PD, Harikrishna JA, Rahim RA (2008) Sequence analysis and characterization of vacuolar-type H+-ATPase proteolipid transcript from Acanthus ebracteatus Vahl. DNA Seq 19:73–77. https://doi.org/10.1080/10425170701445501

    Article  CAS  PubMed  Google Scholar 

  44. Bhardwaj R, Sharma I, Kanwar M, Sharma R, Handa N, Kaur H, Kapoor D, Poonam (2013) Aquaporins: role under salt stress in plants. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 213–248. https://doi.org/10.1007/978-1-4614-4747-4_8

    Chapter  Google Scholar 

  45. Krishnamurthy P, Tan XF, Lim TK, Lim TM, Kumar PP, Loh CS, Lin Q (2014) Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia Officinalis. Proteomics 14:2545–2557. https://doi.org/10.1002/pmic.201300527

    Article  CAS  PubMed  Google Scholar 

  46. Tan WK, Lin Q, Lim TM, Kumar P, Loh CS (2013) Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. Plant Cell Environ 36:1410–1422. https://doi.org/10.1111/pce.12068

    Article  CAS  PubMed  Google Scholar 

  47. Tan WK, Lim TK, Loh CS, Kumar P, Lin Q (2015) Proteomic characterisation of the salt gland-enriched tissues of the mangrove tree species Avicennia Officinalis. PLoS ONE 10:e0133386. https://doi.org/10.1371/journal.pone.0133386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jyothi-Prakash P, Mohanty B, Wijaya E, Lim T, Lin Q, Loh C-S, Kumar P (2014) Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia Officinalis. BMC Plant Biol 14:291. https://doi.org/10.1186/s12870-014-0291-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo Z, Ma D, Li J, Wei M, Zhang L, Zhou L et al (2022) Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. Plant Cell Environ 45:1698–1718. https://doi.org/10.1111/pce.14286

    Article  CAS  PubMed  Google Scholar 

  50. Guo Z, Wei M, Xu C, Wang L, Li J, Liu J et al (2024) Genome-wide identification of Avicennia marina aquaporins reveals their role in adaptation to intertidal habitats and their relevance to salt secretion and vivipary. Plant Cell Environ 47:832–853. https://doi.org/10.1111/pce.14769

    Article  CAS  PubMed  Google Scholar 

  51. Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Tuteja N (2015) Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394. https://doi.org/10.1007/s11356-015-4532-5

    Article  CAS  Google Scholar 

  52. Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees 16:94–99. https://doi.org/10.1007/s00468-001-0154-2

    Article  CAS  Google Scholar 

  53. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt-tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. By mRNA analysis. Plant Cell Rep 25:865–876. https://doi.org/10.1007/s00299-006-0127-4

    Article  CAS  PubMed  Google Scholar 

  54. Yang E, Yi S, Bai F, Niu D, Zhong J, Wu Q, Wang F (2016) Cloning, characterization and expression pattern analysis of a cytosolic copper/zinc superoxide dismutase (SaCSD1) in a highly salt tolerant mangrove (Sonneratia alba). Int J Mol Sci 17:4. https://doi.org/10.3390/ijms17010004

    Article  CAS  Google Scholar 

  55. Wang F, Wu Q, Zhang Z, Chen S, Zhou R (2013) Cloning, expression, and characterization of iron superoxide dismutase in Sonneratia alba, a highly salt tolerant mangrove tree. Protein J 32:259–265. https://doi.org/10.1007/s10930-013-9482-5

    Article  CAS  PubMed  Google Scholar 

  56. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K et al (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res Int 23:19002–19029. https://doi.org/10.1007/s11356-016-7309-6

    Article  CAS  PubMed  Google Scholar 

  57. Jithesh MN (2004) Isolation and characterization of two cDNA isoforms for catalase gene from Avicennia marina (Forsk.) Vierh and its expression in transgenic system. Dissertation, University of Madras

  58. Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578. https://doi.org/10.3390/ijms160613561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen P, Ho CL, Harikrishna J, Wong M, Rahim R (2006) Generation and analysis of expressed sequence tags from the mangrove plant, Acanthus ebracteatus Vahl. Tree Genet Genomes 2:196–201. https://doi.org/10.1007/s11295-006-0044-2

    Article  Google Scholar 

  60. Sultana S, Khew CY, Morshed N, Namasivayam P, Napis S, Chai L (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. Plant Mol Biol Rep 30:311–318. https://doi.org/10.1016/j.jplph.2011.09.004

    Article  CAS  Google Scholar 

  61. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171. https://doi.org/10.1046/j.0016-8025.2001.00790.x

    Article  CAS  PubMed  Google Scholar 

  62. Hibino T, Meng Y-L, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y et al (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363. https://doi.org/10.1023/A:1006497113323

    Article  CAS  PubMed  Google Scholar 

  63. Zhang N, Si H-J, Wen G, Du H-H, Liu B-L, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5:71–77. https://doi.org/10.1007/s11816-010-0160-1

    Article  Google Scholar 

  64. Bhat BA, Mir RA, Mir WR, Hamdani SS, Mir MA (2024) Transcription factors-golden keys to modulate the plant metabolism to develop salinity tolerance. Plant Stress 11:100409. https://doi.org/10.1016/j.stress.2024.100409

    Article  CAS  Google Scholar 

  65. Feng X, Xu S, Li J et al (2020) Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biol 20:178. https://doi.org/10.1186/s12870-020-02395-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321. https://doi.org/10.1007/s12298-013-0179-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149:981–993. https://doi.org/10.1104/pp.108.132795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246. https://doi.org/10.1111/j.1365-3040.2005.01393.x

    Article  CAS  Google Scholar 

  69. Pradhan S, Shyamli PS, Suranjika S, Parida A (2021) Genome wide identification and analysis of the R2R3-MYB transcription factor gene family in the mangrove Avicennia marina. Agronomy 11:123. https://doi.org/10.3390/agronomy11010123

    Article  CAS  Google Scholar 

  70. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87. https://doi.org/10.1016/j.tplants.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  71. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381. https://doi.org/10.1016/j.tplants.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  72. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630. https://doi.org/10.1111/j.1365-313X.2007.03168.x

    Article  CAS  PubMed  Google Scholar 

  73. Murugesan AK, Somasundaram S, Mohan H, Parida AK, Alphonse V, Govindan G (2020) Ectopic expression of AmNAC1 from Avicennia marina (Forsk.) Vierh. Confers multiple abiotic stress tolerance in yeast and tobacco. Plant Cell Tiss Organ Cult 142:51–68. https://doi.org/10.1007/s11240-020-01830-5

    Article  CAS  Google Scholar 

  74. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646. https://doi.org/10.1515/bchm.1998.379.6.633

    Article  CAS  PubMed  Google Scholar 

  75. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25. https://doi.org/10.1007/bf00279525

    Article  CAS  PubMed  Google Scholar 

  76. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. https://doi.org/10.1007/s11033-011-0823-1

    Article  CAS  PubMed  Google Scholar 

  77. Peng YL, Wang YS, Cheng H, Sun CC, Wu P, Wang LY, Fei J (2013) Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140:68–76. https://doi.org/10.1016/j.aquatox.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  78. Peng YL, Wang YS, Cheng H, Wang LY (2015) Characterization and expression analysis of a gene encoding CBF/DREB1 transcription factor from mangrove Aegiceras corniculatum. Ecotoxicology 24:1733–1743. https://doi.org/10.1007/s10646-015-1485-x

    Article  CAS  PubMed  Google Scholar 

  79. Peng YL, Wang YS, Fei J, Cheng H, Sun CC (2020) Isolation and expression analysis of a CBF transcriptional factor gene from the mangrove Bruguiera gymnorrhiza. Ecotoxicology 29:726–735. https://doi.org/10.1007/s10646-020-02215-2

    Article  CAS  PubMed  Google Scholar 

  80. Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N et al (2020) C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Front Plant Sci 11:500889. https://doi.org/10.3389/fpls.2020.00115

    Article  Google Scholar 

  81. Wang K, Ding Y, Cai C, Chen Z, Zhu C (2019) The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plant 165:690–700. https://doi.org/10.1111/ppl.12728

    Article  CAS  PubMed  Google Scholar 

  82. Xie M, Sun J, Gong D, Kong Y (2019) The roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes 10:653. https://doi.org/10.3390/genes10090653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q (2016) A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta 243:783–797. https://doi.org/10.1007/s00425-015-2443-9

    Article  CAS  PubMed  Google Scholar 

  84. Yuan S, Li X, Li R, Wang L, Zhang C, Chen L, Zhou X (2018) Genome-wide identification and classification of soybean C2H2 zinc finger proteins and their expression analysis in legume-rhizobium symbiosis. Front Microbiol 9:287812. https://doi.org/10.3389/fmicb.2018.00126

    Article  Google Scholar 

  85. Hu X, Zhu L, Zhang Y, Xu L, Li N, Zhang X, Pan Y (2019) Genome-wide identification of C2H2 zinc-finger genes and their expression patterns under heat stress in tomato. PeerJ 7:e7929. https://doi.org/10.7717/peerj.7929

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S et al (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537. https://doi.org/10.1016/j.febslet.2006.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao H, Song A, Zhu X, Chen F, Jiang J, Chen Y et al (2012) The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta 235:979–993. https://doi.org/10.1007/s00425-011-1558-x

    Article  CAS  PubMed  Google Scholar 

  88. Yu Z, Yan H, Liang L, Zhang Y, Yang H, Li W, Deng S (2021) A C2H2-type zinc-finger protein from Millettia pinnata, MpZFP1, enhances salt tolerance in transgenic Arabidopsis. Int J Mol Sci 22:10832. https://doi.org/10.3390/ijms221910832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abbasi F, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081. https://doi.org/10.1002/pmic.200300741

    Article  CAS  PubMed  Google Scholar 

  90. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86. https://doi.org/10.1007/s11103-007-9253-9

    Article  CAS  PubMed  Google Scholar 

  91. Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50:439–446. https://doi.org/10.1093/pcp/pcp002

    Article  CAS  PubMed  Google Scholar 

  92. Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120. https://doi.org/10.1016/j.envexpbot.2017.11.004

    Article  CAS  Google Scholar 

  93. Yamada A, Saitoh T, Mimura T, Ozeki Y (2002a) Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910. https://doi.org/10.1093/pcp/pcf108

    Article  CAS  PubMed  Google Scholar 

  94. Yu X, Kikuchi A, Shimazaki T, Yamada A, Ozeki Y, Matsunaga E, Watanabe KN (2013) Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene. J Plant Res 126:141–150. https://doi.org/10.1007/s10265-012-0503-9

    Article  CAS  PubMed  Google Scholar 

  95. Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206. https://doi.org/10.1021/cr00022a009

    Article  CAS  Google Scholar 

  96. Basyuni M, Baba S, Kinjo Y, Putri LA, Hakim L, Oku H, Tamaki M (2012) Proteome analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Proteome Sci 10:47. https://doi.org/10.1186/1477-5956-10-47

    Article  CAS  Google Scholar 

  97. Robinson C, Klösgen RB (1994) Targeting of proteins into and across the thylakoid membrane-a multitude of mechanisms. Plant Mol Biol 26:15–24. https://doi.org/10.1007/bf00039516

    Article  CAS  PubMed  Google Scholar 

  98. Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen-evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285. https://doi.org/10.1093/pcp/pcd061

    Article  CAS  PubMed  Google Scholar 

  99. Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS ONE 9:e83141. https://doi.org/10.1371/journal.pone.0083141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu Z, Chen J, Zheng HL (2012) Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiol 32:1378–1388. https://doi.org/10.1093/treephys/tps097

    Article  CAS  PubMed  Google Scholar 

  101. Yamada A, Sekiguchi M, Mimura T, Ozeki Y (2002b) The role of plant CCT α in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048. https://doi.org/10.1093/pcp/pcf120

    Article  CAS  PubMed  Google Scholar 

  102. Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424. https://doi.org/10.1007/s00122-004-1801-y

    Article  CAS  PubMed  Google Scholar 

  103. Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of Burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171:234–241. https://doi.org/10.1016/j.plantsci.2006.03.015

    Article  Google Scholar 

  104. Fu X, Huang Y, Deng S, Zhou R, Yang G, Ni X et al (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154. https://doi.org/10.1016/j.plantsci.2005.03.009

    Article  CAS  Google Scholar 

  105. Wong Y-Y, Ho C-L, Nguyen PD, Teo S-S, Harikrishna JA, Rahim RA, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera Cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122. https://doi.org/10.1016/j.aquabot.2006.09.009

    Article  CAS  Google Scholar 

  106. Zeng H-C, Deng L-H, Zhang C-F (2006) Cloning of salt tolerance-related cDNAs from the mangrove plant Sesuvium portulacastrum L. J Integr Plant Biol 48:952–957. https://doi.org/10.1111/j.1744-7909.2006.00287.x

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

PM conceived the idea. GG, HP, VA wrote the first draft. PM and GG refined and finalized the draft. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Madasamy Parani.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindan, G., Harini, P., Alphonse, V. et al. From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance. Mol Biol Rep 51, 598 (2024). https://doi.org/10.1007/s11033-024-09539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09539-w

Keywords

Navigation