Skip to main content

Mangroves: An Underutilized Gene Pool to Combat Salinity

  • Chapter
  • First Online:
Conservation and Sustainable Utilization of Bioresources

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 30))

Abstract

Salinity is a global problem, being aggravated by climate change, scanty rainfall, poor irrigation systems, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and stress pathways are co-ordinately linked to impart salt tolerance. Although a number of salt-responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to salt stress. Several known genes, like antiporters, antioxidant encoding genes, and some novel genes, were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). We provide here a comprehensive update on salinity-induced adverse effects on soils and plants. In this chapter, the physiological and biochemical adaptation strategies that help mangroves and crop plants grow and survive in salinity-affected areas are reviewed. In this review, mangroves are discussed as an underutilized gene pool of salt-responsive genes that can be utilized for developing salinity tolerance in crop plants using strategies, like genetic engineering and molecular breeding by marker-assisted breeding phenotyping technologies, GWAS, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015a) NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J Plant Physiol 183:41–51

    CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Diaz-Vivancos P, Alvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015b) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242(4):829–846

    CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Google Scholar 

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967

    CAS  PubMed  Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54(2):201–212

    CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    CAS  PubMed  Google Scholar 

  • Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Hashem A, Al-Arjani ABF, Alqarawi AA, Abd-Allah EF (2021) Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol Environ Saf 209:111829

    CAS  PubMed  Google Scholar 

  • Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, Panda SK (2016) Overexpression of a barley aquaporin gene, HvPIP2; 5 confers salt and osmotic stress tolerance in yeast and plants. Front Plant Sci 7:1566

    PubMed  PubMed Central  Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59(15):4119–4131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA (2012) TsHKT1; 2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158(3):1463–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alia PSP, Saradhi PP, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photo inhibitory damage. Biochem Biophys Res Commun 181(3):1238–1244. https://doi.org/10.1016/0006-291x(91)92071-q. PMID: 1764073

    Article  CAS  PubMed  Google Scholar 

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278(42):40882–40889

    CAS  PubMed  Google Scholar 

  • Álvarez S, Sánchez-Blanco MJ (2013) Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Sci Hortic 156:54–62

    Google Scholar 

  • Álvarez S, Sanchez-Blanco MJ (2014) Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol 16(4):757–764

    PubMed  Google Scholar 

  • Álvarez S, Navarro A, Nicolás E, Sánchez-Blanco MJ (2011) Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Sci Hortic 129(2):306–312

    Google Scholar 

  • Al-Yassin A, Khademian R (2015) Allelic variation of salinity tolerance genes in barley ecotypes (natural populations) using EcoTILLING: a review article. Am Eur J Agric Environ Sci 15(4):563–572

    Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2(1):3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Gill SS, Ahmad I, Tuteja N, Soni P, Pareek A, Umar S, Iqbal M, Pacheco M, Duarte AC, Pereira E (2012) Understanding stress-responsive mechanisms in plants: an overview of transcriptomics and proteomics approaches. In: Improving crop resistance to abiotic stress, pp 337–355

    Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581(12):2247–2254

    CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    CAS  PubMed  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36(2):229–239

    CAS  PubMed  Google Scholar 

  • Ashihara H, Wakahara S, Suzuki M, Kato A, Sasamoto H, Baba S (2003) Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiol Biochem 41(2):133–139

    CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752

    CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJ (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:1–19

    Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees 2(3):129–142

    Google Scholar 

  • Ball MC, Pidsley SM (1995) Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia. Funct Ecol 9:77–85

    Google Scholar 

  • Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Funct Plant Biol 40(9):819–831

    CAS  PubMed  Google Scholar 

  • Ben-Saad R, Meynard D, Ben-Romdhane W, Mieulet D, Verdeil JL, Al-Doss A, Guiderdoni E, Hassairi A (2015) The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Rep 34(10):1791–1806

    CAS  PubMed  Google Scholar 

  • Bernstein N, Meiri A, Zilberstaine M (2004) Root growth of avocado is more sensitive to salinity than shoot growth. J Am Soc Hortic Sci 129(2):188–192

    Google Scholar 

  • Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543(7645):346–354

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26(12):2071–2082

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424

    CAS  PubMed  Google Scholar 

  • Bockheim JG, Gennadiyev AN (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95(1–2):53–72

    Google Scholar 

  • Breckle SW (1995) How do halophytes overcome salinity? In: Biology of salt tolerant plants, vol. 23, pp 199–203

    Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26(11):2017–2026

    CAS  PubMed  Google Scholar 

  • Burchett MD, Clarke CJ, Field CD, Pulkownik A (1989) Growth and respiration in two mangrove species at a range of salinities. Physiol Plant 75(2):299–303

    Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150

    CAS  PubMed  Google Scholar 

  • Calestani C, Moses MS, Maestri E, Marmiroli N, Bray EA (2015) Constitutive expression of the barley dehydrin gene aba2 enhances Arabidopsis germination in response to salt stress. Int J Plant Biol 6(1):5826

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Abiotic stress in plants-mechanisms and adaptations, vol. 1, pp 21–38

    Google Scholar 

  • Cassaniti C, Leonardi C, Flowers TJ (2009) The effects of sodium chloride on ornamental shrubs. Sci Hortic 122(4):586–593

    CAS  Google Scholar 

  • Cassaniti C, Romano D, Flowers TJ (2012) The response of ornamental plants to saline irrigation water. In: Irrigation: water management, pollution and alternative strategies, pp 131–158

    Google Scholar 

  • Çelik Ö, Atak Ç (2017) Applications of ionizing radiation in mutation breeding. In: New insights on gamma rays, pp 111–132

    Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147(1):20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou R, Huang Y, Zhang M, Yang G, Zhong C, Shi S (2011) Transcriptome sequencing of a highly salt tolerant mangrove species Sonneratia alba using Illumina platform. Mar Genomics 4(2):129–136

    PubMed  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2015) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56(1):73–83

    CAS  PubMed  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10(1):71–82

    CAS  Google Scholar 

  • Chrominski A, Bhat RB, Weber DJ, Smith BN (1988) Osmotic stress-dependent conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in the halophyte, Allenrolfea occidentalis. Environ Exp Bot 28(3):171–174

    CAS  Google Scholar 

  • Cisneros AE, Carbonell A (2020) Artificial small RNA-based silencing tools for antiviral resistance in plants. Plants 9(6):669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough BF (1984) Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity. Funct Plant Biol 11(5):419–430

    CAS  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45(11):1425–1443

    CAS  Google Scholar 

  • Cramer GR (2002a) Response of abscisic acid mutants of Arabidopsis to salinity. Funct Plant Biol 29(5):561–567

    CAS  PubMed  Google Scholar 

  • Cramer GR (2002b) Sodium-calcium interactions under salinity stress. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227

    Google Scholar 

  • Croser C, Renault S, Franklin J, Zwiazek J (2001) The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut 115(1):9–16

    CAS  PubMed  Google Scholar 

  • Das AB, Strasser RJ (2013) Salinity-induced genes and molecular basis of salt-tolerant strategies in Mangroves. In: Molecular stress physiology of plants. Springer, India, pp 53–86

    Google Scholar 

  • Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183(3):764–775

    CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38

    CAS  PubMed  Google Scholar 

  • Downton WJS (1982) Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Funct Plant Biol 9(5):519–528

    CAS  Google Scholar 

  • Duke NC (2013) Mangrove floristics and biogeography. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 63–100

    Google Scholar 

  • Duke N, Ball M, Ellison J (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7(1):27–47

    Google Scholar 

  • Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461

    PubMed  PubMed Central  Google Scholar 

  • Elphick CH, Sanders D, Maathuis FJ (2001) Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant Cell Environ 24(7):733–740

    CAS  Google Scholar 

  • Espartero J, Sánchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29(6):1223–1233

    CAS  PubMed  Google Scholar 

  • Eynard A, Lal R, Wiebe K (2005) Crop response in salt-affected soils. J Sustain Agric 27(1):5–50

    Google Scholar 

  • Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorhiza using Agrobacterium functional screening. Plant Sci 176(2):272–278

    CAS  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    PubMed  Google Scholar 

  • FAO (2017) The future of food and agriculture—trends and challenges. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fan W, Zhang Z, Zhang Y (2009) Cloning and molecular characterization of fructose-1, 6-bisphosphate aldolase gene regulated by high salinity and drought in Sesuvium portulacastrum. Plant Cell Rep 28(6):975–984

    CAS  PubMed  Google Scholar 

  • Fernández-García N, Olmos E, Bardisi E, García-De la Garma J, López-Berenguer C, Rubio-Asensio JS (2014) Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J Plant Physiol 171(5):64–75

    PubMed  Google Scholar 

  • Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172(1):485–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foolad MR (1999) Genetics of salt and cold tolerance in tomato quantitative analysis and QTL mapping. Plant Biotechnol 16(1):55–64

    CAS  Google Scholar 

  • Franco JA, Fernandez JA, Bañón S, González A (1997) Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. Hortscience 32(4):642–644

    Google Scholar 

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011a) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotechnol 86(6):543–556

    Google Scholar 

  • Franco JA, Cros V, Vicente MJ, Martínez-Sánchez JJ (2011b) Effects of salinity on the germination, growth, and nitrate contents of purslane (Portulaca oleracea L.) cultivated under different climatic conditions. J Hortic Sci Biotechnol 86(1):1–6

    Google Scholar 

  • Fu X, Huang Y, Deng S, Zho R, Yang G, Ni X, Li W, Shi S (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169(1):147–154

    CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    CAS  PubMed  Google Scholar 

  • Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ashwin G, Parida A (2012) A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot 63(12):4549–4561

    CAS  PubMed  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21(1):69–84

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581(12):2204–2214

    CAS  PubMed  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59(11):3039–3050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem ME, Marrou H, Sinclair TR (2015) Physiological phenotyping of plants for crop improvement. Trends Plant Sci 20(3):139–144

    CAS  PubMed  Google Scholar 

  • Gleeson T, Wada Y, Bierkens MF, Van Beek LP (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197–200

    CAS  PubMed  Google Scholar 

  • Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125(4):1643–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Bellot MJ, Álvarez S, Bañón S, Ortuño MF, Sánchez-Blanco MJ (2013a) Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agric Water Manag 128:131–139

    Google Scholar 

  • Gómez-Bellot MJ, Alvarez S, Castillo M, Bañón S, Ortuño MF, Sánchez-Blanco MJ (2013b) Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. J Plant Res 126(4):567–576

    PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31(1):149–190

    CAS  Google Scholar 

  • Grigore MN, Villanueva Lozano M, Boscaiu Neagu MT, Vicente Meana Ó (2012) Do halophytes really require salts for their growth and development? An experimental approach. Not Sci Biol 4(2):23–29

    CAS  Google Scholar 

  • Gulfishan M, Bhat TA, Oves M (2016) Mutants as a genetic resource for future crop improvement. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer International Publishing, Cham, pp 95–112

    Google Scholar 

  • Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol 10(1):1–16

    Google Scholar 

  • Guo W, Chen T, Hussain N, Zhang G, Jiang L (2016) Characterization of salinity tolerance of transgenic rice lines harboring HsCBL8 of wild barley (Hordeum spontanum) line from Qinghai-Tibet plateau. Front Plant Sci 7:1678

    PubMed  PubMed Central  Google Scholar 

  • Gürel F, Öztürk ZN, Uçarlı C, Rosellini D (2016) Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci 7:1137

    PubMed  PubMed Central  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46(1):35–42

    CAS  PubMed  Google Scholar 

  • Han H, Li Y, Zhou S (2008) Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30(8):1501–1507

    CAS  PubMed  Google Scholar 

  • Han JS, Park KI, Jeon SM, Park S, Naing AH, Kim CK (2015) Assessments of salt tolerance in a bottle gourd line expressing the Arabidopsis H+-pyrophosphatase AVP 1 gene and in a watermelon plant grafted onto a transgenic bottle gourd rootstock. Plant Breed 134(2):233–238

    CAS  Google Scholar 

  • Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G (2018) A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol 59(10):1976–1989

    CAS  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    PubMed  PubMed Central  Google Scholar 

  • Hanson AD, Burnet M (1994) Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In: Biochemical and cellular mechanisms of stress tolerance in plants. Springer, Berlin, pp 291–302

    Google Scholar 

  • Hantao Z, Qingtong L, Wen P, Yuanyuan G, Pan C, Xu C, Bo L (2004) Transformation of the salt tolerant gene of Avicennia marina into tobacco plants and cultivation of salt-tolerant lines. Chin Sci Bull 49:456–461

    Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5(5):503–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017a) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain M, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017b) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    CAS  Google Scholar 

  • Hazzouri KM, Khraiwesh B, Amiri K, Pauli D, Blake T, Shahid M, Mullath SK, Nelson D, Mansour AL, Salehi-Ashtiani K, Purugganan M (2018) Mapping of HKT1; 5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci 9:156

    PubMed  PubMed Central  Google Scholar 

  • He Z, Zhang Z, Guo W, Zhang Y, Zhou R, Shi S (2015) De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-Seq and discovery of whole-genome duplications in the ancestor of palms. PLoS One 10(12):e0145385

    PubMed  PubMed Central  Google Scholar 

  • He Z, Xu S, Zhang Z, Guo W, Lyu H, Zhong C, Boufford DE, Duke NC, International Mangrove Consortium, Shi S (2020) Convergent adaptation of the genomes of woody plants at the land–sea interface. National science review 7(6):978–993

    PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257

    PubMed  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89(1):103–110

    CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105(2):151–167

    CAS  Google Scholar 

  • Hernández JA, Aguilar AB, Portillo B, López-Gómez E, Beneyto JM, García-Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30(11):1127–1137

    PubMed  Google Scholar 

  • Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45(3):353–363

    CAS  PubMed  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    CAS  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73(9):2007–2013

    CAS  PubMed  Google Scholar 

  • Howard JT, Jiao S, Tiezzi F, Huang Y, Gray KA, Maltecca C (2015) Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars. BMC Genet 16(1):1–11

    Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51(350):1595–1616

    CAS  PubMed  Google Scholar 

  • Huang W, Fang XD, Li GY, Lin QF, Zhao WM (2003) Cloning and expression analysis of salt responsive gene from Kandelia candel. Biol Plant 47(4):501–507

    Google Scholar 

  • Huang L, Kuang L, Wu L, Wu D, Zhang G (2019) Comparisons in functions of HKT1; 5 transporters between Hordeum marinum and Hordeum vulgare in responses to salt stress. Plant Growth Regul 89(3):309–319

    CAS  Google Scholar 

  • Humplík JF, Lazár D, Husičková A, Spíchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—a review. Plant Methods 11(1):1–10

    Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293(5532):1139–1142

    CAS  PubMed  Google Scholar 

  • Jackson SA (2016) Rice: the first crop genome. Rice 9:1–3

    Google Scholar 

  • Jain M, Choudhary D, Kale RK, Bhalla-Sarin N (2002) Salt-and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant 114(4):499–505

    CAS  PubMed  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM (2017) The genome of Chenopodium quinoa. Nature 542(7641):307–312

    CAS  PubMed  Google Scholar 

  • Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environ 33(5):793–804

    CAS  PubMed  Google Scholar 

  • Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011a) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38(3):1965–1973

    CAS  PubMed  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011b) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38(7):4823–4832

    CAS  PubMed  Google Scholar 

  • Jha B, Singh NP, Mishra A (2012) Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte. J Agric Food Chem 60:4320–4326

    CAS  PubMed  Google Scholar 

  • Jörnvall H, von Bahr-Lindström H, Jany KD, Ulmer W, Fröschle M (1984) Extended superfamily of short alcohol-polyol-sugar dehydrogenases: structural similarities between glucose and ribitol dehydrogenases. FEBS Lett 165(2):190–196

    PubMed  Google Scholar 

  • Joshi M, Mishra A, Jha B (2012) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Indus Crops Prod 35(1):313–316

    CAS  Google Scholar 

  • Joshi M, Jha A, Mishra A, Jha B (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136. https://doi.org/10.1371/journal.pone.0071136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Mangu VR, Bedre R, Sanchez L, Pilcher W, Zandkarimi H, Baisakh N (2015) Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants. In: Elucidation of abiotic stress signaling in plants. Springer, New York, pp 243–279

    Google Scholar 

  • Joshi A, Kanthaliya B, Arora J (2018a) Halophytes of Thar desert: potential source of nutrition and feedstuff. Int J Bioassays 8:5674–5683

    Google Scholar 

  • Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2018b) Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ 41(5):936–946

    CAS  PubMed  Google Scholar 

  • Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225(3):575–588

    CAS  PubMed  Google Scholar 

  • Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger AE, Meyer RC, Riewe D, Altmann T (2015) Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front Plant Sci 5:770

    PubMed  PubMed Central  Google Scholar 

  • Kavita K, Alka S (2010) Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian J Biotechol 2(2):73–85

    Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92(10):1321–1329

    CAS  PubMed  Google Scholar 

  • Khalil R, ElSayed N, Hashem HA (2021) Nanoparticles as a new promising tool to increase plant immunity against abiotic stress. In: Sustainable agriculture reviews, vol 53. Springer, Cham, pp 61–91

    Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131(1):309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150(3):1503–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korkina LG, Mikhal’Chik E, Suprun MV, Pastore S, Dal Toso R (2007) Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cell Mol Biol 53(5):84–91

    CAS  PubMed  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56(2):136–146

    CAS  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189(1):54–81

    CAS  PubMed  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem Ofricinus communis L. J Biol Chem 277(28):25062–25069

    PubMed  Google Scholar 

  • Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, Sopory SK, Pareek A, Singla-Pareek SL (2012) Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Mol Biol 79(6):555–568

    CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgen Res 17(4):651–663

    CAS  Google Scholar 

  • Lan T, Duan Y, Wang B, Zhou Y, Wu W (2011) Molecular cloning and functional characterization of a Na+/H+ antiporter gene from halophyte Spartina anglica. Turk J Agric Forest 35(5):535–543

    CAS  Google Scholar 

  • Li Q, Yin H, Li D, Zhu H, Zhang Y, Zhu W (2007) Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K. J Genet Genomics 34:355–361. https://doi.org/10.1016/S1673-8527(07)60038-1

    Article  CAS  PubMed  Google Scholar 

  • Li QL, Xie JH, Ma XQ, Li D (2016) Molecular cloning of Phosphoethanolamine N-methyltransferase (PEAMT) gene and its promoter from the halophyte Suaeda liaotungensis and their response to salt stress. Acta Physiol Plant 38(2):1–8

    Google Scholar 

  • Li N, Yang T, Guo Z, Wang Q, Chai M, Wu M, Li X, Li W, Li G, Tang J, Tang G (2020) Maize microrna166 inactivation confers plant development and abiotic stress resistance. Int J Mol Sci 21(24):9506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Mol Biol Rep 37(2):729–735

    CAS  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Low R, Rockel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Luttge U, Rausch T (1996) Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110(1):259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lü SY, Jing YX, Shen SH, Zhao HY, Ma IQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) link and its overexpression in transgenic tobaccos. J Integr Plant Biol 47(3):343–349

    Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007a) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63(2):289–305

    CAS  PubMed  Google Scholar 

  • Lu Z, Liu D, Liu S (2007b) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26(10):1909–1917

    CAS  PubMed  Google Scholar 

  • Ma SC, Li FM, Xu BC, Huang ZB (2010) Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crop Res 115(2):158–164

    Google Scholar 

  • Mangano S, Silberstein S, Santa-María GE (2008) Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress. FEBS Lett 582(28):3922–3928

    CAS  PubMed  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94(3):263–272

    Google Scholar 

  • Mano Y, Nakazumi H, Takeda K (1996) Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Japan J Breed 46(3):227–233

    Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mayer KF, Rogers J, Doleˇzel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    CAS  PubMed  Google Scholar 

  • Mazher AA, El-Quesni EF, Farahat MM (2007) Responses of ornamental and woody trees to salinity. World J Agric Sci 3(3):386–395

    Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3(1):200–231

    Google Scholar 

  • Meera SP, Augustine A (2020) De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves. Plant Physiol Biochem 155:683–696

    CAS  PubMed  Google Scholar 

  • Meera SP, Sreeshan A, Augustine A (2013) Functional screening and genetic engineering of mangrove salt responsive genes: a review. Ann Plant Sci 02(12):535–542

    Google Scholar 

  • Meera SP, Sreeshan A, Augustine A (2020) Leaf tissue specific transcriptome sequence and de novo assembly datasets of Asiatic mangrove Rhizophora mucronata Lam. Data Brief 31:105747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110(3):416–424

    CAS  PubMed  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479

    CAS  PubMed  Google Scholar 

  • Mishra A, Joshi M, Jha B (2013) Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte. Carbohydr Polym 92(2):1942–1945

    CAS  PubMed  Google Scholar 

  • Mishra A, Patel MK, Jha B (2015) Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. J Funct Foods 1(13):21–31

    Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    PubMed  PubMed Central  Google Scholar 

  • Mitchell N, Campbell LG, Ahern JR, Paine KC, Giroldo AB, Whitney KD (2019) Correlates of hybridization in plants. Evolution Let 3(6):570–585

    Google Scholar 

  • Miteva T, Zhelev NZ, Popova L (1992) Effect of salinity on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 140:46–51

    CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26(6):845–856

    CAS  PubMed  Google Scholar 

  • Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of Burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171(2):234–241

    Google Scholar 

  • Mohammad B, Yuji K, Shigeyuki B, Naoya S, Hironori I, Edy BMS, Hirosuke O (2011) Isolation of salt stress tolerance genes from roots of mangrove plant, rhizophora stylosa Griff., using PCR based suppression subtractive hybridization. Plant Mol Biol Rep 29(3):533–543

    Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97(1):148–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman M, Ansary MU, Keya SS, Abdelrahman M, Miah G, Tran LSP (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 41:918–934

    CAS  PubMed  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82(4):371–406

    Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257

    CAS  PubMed  Google Scholar 

  • Munns R (1992) A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Funct Plant Biol 19(2):127–135

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    CAS  PubMed  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13(1):143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11(2):293–305

    CAS  PubMed  Google Scholar 

  • Mwando E, Angessa TT, Han Y, Li C (2020) Salinity tolerance in barley during germination—homologs and potential genes. J Zhejiang Univ Sci B 21(2):93–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210

    CAS  PubMed  Google Scholar 

  • Navarro JM, Gomez-Gomez A, Pérez-Pérez JG, Botia P (2010) Effect of saline conditions on the maturation process of Clementine Clemenules fruits on two different rootstocks. Spanish J Agric Res 8:21–29

    Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171(1):76–85

    CAS  PubMed  Google Scholar 

  • Nguyen PD, Ho CL, Harikrishna JA, Wong ML, Abdul Rahim R (2007) Functional screening for salinity tolerant genes from Acanthus ebracteatus Vahl using Escherichia coli as a host. Trees 21(5):515–520

    CAS  Google Scholar 

  • Nikam AA, Devarumath RM, Ahuja A, Babu H, Shitole MG, Suprasanna P (2015) Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). Crop J 3(1):46–56

    Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5(5):646–656

    CAS  PubMed  Google Scholar 

  • Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154(3):1040–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532(3):279–282

    CAS  PubMed  Google Scholar 

  • Palmqvist NM, Seisenbaeva GA, Svedlindh P, Kessler VG (2017) Maghemite nanoparticles acts as nanozymes, Improving growth and abiotic stress tolerance in Brassica napus. Nano Res Lett 12(1):1–9

    CAS  Google Scholar 

  • Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9(9):1337–1340

    CAS  PubMed  Google Scholar 

  • Pando GL, Deza P (2017) Development of advanced mutant lines of native grains through radiation-induced mutagenesis in Peru. Hortic Int J 1(3):93–96

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    CAS  PubMed  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39(1):245–265

    Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell Tissue Organ Cult 122(2):477–490

    CAS  Google Scholar 

  • Penella C, Nebauer SG, Quinones A, Bautista S, López-Galarza S, Calatayud A (2015) Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Sci 230:12–22

    CAS  PubMed  Google Scholar 

  • Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, San Bautista A, Remorini D, Nali C, López-Galarza S, Calatayud A (2016) Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physiol 193:1–11

    CAS  PubMed  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226(3):729–740

    CAS  PubMed  Google Scholar 

  • Pezeshki SR, DeLaune RD, Patrick WH Jr (1990) Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the US Gulf Coast. Forest Ecol Manag 33:287–301

    Google Scholar 

  • Popp M, Larher F, Weigel P (1985) Osmotic adaption in Australian mangroves. In: Ecology of coastal vegetation. Springer, Dordrecht, pp 247–253

    Google Scholar 

  • Prasad A, Sharma N, Prasad M (2020) Noncoding but coding: pri-miRNA into the action. Trends Plant Sci 26(3):204–206

    PubMed  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgen Res 17(2):281–291

    CAS  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38(4):282–295

    Google Scholar 

  • Qiu L, Wu D, Ali S, Cai S, Dai F, Jin X, Wu F, Zhang G (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122(4):695–703

    CAS  PubMed  Google Scholar 

  • Qu GZ, Zang L, Xilin H, Gao C, Zheng T, Li KL (2012) Co-transfer of LEA and bZip genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco. Plant Mol Biol Report 30(2):512–518

    CAS  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154(1):421–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Mostofa MG, Keya SS, Siddiqui M, Ansary M, Uddin M, Das AK, Tran LSP (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. Int J Mol Sci 22(19):107

    Google Scholar 

  • Rai V, Tuteja N, Takabe T (2012) Transporters and abiotic stress tolerance in plants. In: Improving crop resistance to abiotic stress, pp 507-522

    Google Scholar 

  • Rajalakshmi S, Parida A (2012) Halophytes as a source of genes for abiotic stress tolerance. J Plant Biochem Biotechnol 21(1):63–66

    CAS  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    CAS  PubMed  Google Scholar 

  • Rajput VD, Minkina T, Kumari A, Singh VK, Verma KK, Mandzhieva S, Sushkova S, Srivastava S, Keswani C (2021) Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants 10(6):1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranathunge K, Shao S, Qutob D, Gijzen M, Peterson CA, Bernards MA (2010) Properties of the soybean seed coat cuticle change during development. Planta 231(5):1171–1188

    CAS  PubMed  Google Scholar 

  • Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S (2018) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121(4):603–616

    CAS  PubMed  Google Scholar 

  • Ratajczak R, Richter J, Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3–CAM transition and plant age. Plant Cell Environ 17(10):1101–1112

    CAS  Google Scholar 

  • Rengasamy P, Olsson KA (1993) Irrigation and sodicity. Soil Research 31(6):821–837

    CAS  Google Scholar 

  • Rigó G, Valkai I, Faragó D, Kiss E, Van Houdt S, Van de Steene N, Hannah MA, Szabados L (2016) Gene mining in halophytes: functional identification of stress tolerance genes in Lepidium crassifolium. Plant Cell Environ 39:2074–2084

    PubMed  Google Scholar 

  • Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins N (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62(3):1201–1216

    CAS  PubMed  Google Scholar 

  • Rodrıguez P, Torrecillas A, Morales MA, Ortuño MF, Sánchez-Blanco MJ (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53(2):113–123

    Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4(4):265–276

    PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156(2):245–251

    PubMed  Google Scholar 

  • Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgen Res 20(5):1003–1018

    Google Scholar 

  • Saade S, Brien C, Pailles Y, Berger B, Shahid M, Russell J, Waugh R, Negrão S, Tester M (2020) Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS One 15(7):e0236037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos J, Al-Azzawi M, Aronson J, Flowers TJ (2016) eHALOPH a database of salt-tolerant plants: helping put halophytes to work. Plant Cell Physiol 57(1):e10

    PubMed  Google Scholar 

  • Savé R, Olivella C, Biel C, Adillón J, Rabella R (1994) Seasonal patterns of water relationships, photosynthetic pigments and morphology of Actinidia deliciosa plants of the Hayward and Tomuri cultivars. Agronomie 14(2):121–126

    Google Scholar 

  • Saxena M, Bisht R, Roy SD, Sopory SK, Bhalla-Sarin N (2005) Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun 336(3):813–819

    CAS  PubMed  Google Scholar 

  • Schaeffer HJ, Forsthoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28(2):205–218

    CAS  PubMed  Google Scholar 

  • Schaffer BA, Wolstenholme BN, Whiley AW (eds) 2013 The avocado: botany, production and uses

    Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216(3):682–698

    CAS  PubMed  Google Scholar 

  • Schnable PS (2012) The B73 maize genome: complexity, diversity, and dynamics (November, pg 1112, 2009). Science 337(6098):1040–1040

    CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112(7):1209–1221

    PubMed  PubMed Central  Google Scholar 

  • Shannon MC, Grieve CM, Francois LE (1994) Whole-plant response to salinity. In: Wilkinson RE (ed) Plant-environment interactions

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008a) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331(3):215–225

    PubMed  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008b) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4(1):8

    CAS  Google Scholar 

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 9(3):e92900

    PubMed  PubMed Central  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    CAS  PubMed  Google Scholar 

  • Silva EG, Silva AF, Lima JD, Silva MD, Maia JM (2017) Vegetative development and content of calcium, potassium, and sodium in watermelon under salinity stress on organic substrates. Pesq Agrop Brasileira 52:1149–1157

    Google Scholar 

  • Singh N, Mishra A, Jha B (2014a) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547(1):119–125

    CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014b) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16(3):321–332

    CAS  Google Scholar 

  • Singh VK, Mishra A, Haque I, Jha B (2016a) A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci Rep 6(1):1–16

    Google Scholar 

  • Singh VK, Mishra A, Haque I, Jha B (2016b) Corrigendum: a novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci Rep 6:35128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Reddy M, Sopory SK (2001) Transgenic approach towards developing abiotic stress tolerance in plants. Proc Indian Natl Sci Acad Part B 67(5):265–284

    CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100(25):14672–14677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgen Res 17(2):171–180

    CAS  Google Scholar 

  • Skipsey M, Christopher JA, Jane KT, Jepson I, Edwards R (2000) Cloning and characterization of glyoxalase from soybean. Arch Biochem Biophys 374:261–268

    CAS  PubMed  Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40(5):752–771

    CAS  PubMed  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982

    PubMed  PubMed Central  Google Scholar 

  • Sreeshan A, Meera SP, Augustine A (2014) A review on transporters in salt tolerant mangroves. Trees 28(4):957–960

    CAS  Google Scholar 

  • Sreeshan A, Meera SP, Augustine A (2018) Betaine Aldehyde Dehydrogenase (BADH) gene and free amino acid analysis in Rhizophora mucronata Lam. from Thalassery region of Kerala, India

    Google Scholar 

  • Srivastava J, Prasad V (2019) Evolution and paleobiogeography of mangroves. Mar Ecol 40(6):e12571

    Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542

    CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125(2):604–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol 169(3):311–318

    CAS  PubMed  Google Scholar 

  • Sun Q, Gao F, Zhao L, Li K, Zhang J (2010) Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol 10(1):1–12

    CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135(3):1697–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taji T, Komatsu K, Katori T, Kawasaki Y, Sakata Y, Tanaka S, Kobayashi M, Toyoda A, Seki M, Shinozaki K (2010) Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biol 10(1):1–10

    Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457

    CAS  PubMed  Google Scholar 

  • Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46(3):225–359

    Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity. Funct Plant Biol 10(1):109–117

    Google Scholar 

  • Tanaka S, Ikeda K, Ono M, Miyasaka H (2002) Isolation of several anti-stress genes from a mangrove plant Avicennia marina. World J Microbiol Biotechnol 18(8):801–804

    CAS  Google Scholar 

  • Tattini M, Gucci R, Coradeschi MA, Ponzio C, Everard JD (1995) Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiol Plant 95(2):203–210

    CAS  Google Scholar 

  • Tiwari R, Rajam MV (2022) RNA-and miRNA-interference to enhance abiotic stress tolerance in plants. J Plant Biochem Biotechnol:1–16

    Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol 55(1):201–217

    CAS  PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS One 10(7):e0131567

    PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Patel MK, Chaturvedi AK, Mishra A, Jha B (2016) Functional characterization of the tau class glutathione-S-transferases gene (SbGSTU) promoter of Salicornia brachiata under salinity and osmotic stress. PLoS One 11(2):e0148494

    PubMed  PubMed Central  Google Scholar 

  • Tomlinson PB (1986) The botany of Mangroves. Cambridge University Press

    Google Scholar 

  • Tu Anh TT, Khanh TD, Dat TD, Xuan TD (2018) Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants. Agriculture 8(2):30

    Google Scholar 

  • Tudela D, Primo-Millo E (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100(1):131–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuomainen M, Ahonen V, Kärenlampi SO, Schat H, Paasela T, Švanys A, Tuohimetsä S, Peräniemi S, Tervahauta A (2011) Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Planta 233(6):1173–1184

    CAS  PubMed  Google Scholar 

  • Udawat P, Mishra A, Jha B (2014) Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli. Gene 536(1):163–170

    CAS  PubMed  Google Scholar 

  • Udawat P, Jha RK, Sinha D, Mishra A, Jha B (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci 7:518

    PubMed  PubMed Central  Google Scholar 

  • Udawat P, Jha RK, Mishra A, Jha B (2017) Overexpression of a plasma membrane-localized SbSRP-like protein enhances salinity and osmotic stress tolerance in transgenic tobacco. Front Plant Sci 8:582

    PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122

    CAS  PubMed  Google Scholar 

  • UN Water and Energy (2014) The United Nations World Water Development Report 2014. UNESCO, Paris

    Google Scholar 

  • USDA-ARS. 2008. Research databases. Bibliography on Salt Tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm?docid=8908. Accessed 28 Apr 2010

  • Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. In: Roots: the dynamic interface between plants and the earth, pp 157–167

    Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17(4):385–395

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    CAS  PubMed  Google Scholar 

  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:873

    PubMed  PubMed Central  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277(21):18373–18382

    CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6(2):143–156

    CAS  PubMed  Google Scholar 

  • Walker RR, Sedgley M, Blesing MA, Douglas TJ (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J Exp Bot 35(10):1481–1494

    CAS  Google Scholar 

  • Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166(3):609–616

    CAS  Google Scholar 

  • Wang L, Pan D, Lv X, Cheng CL, Li J, Liang W, Xing J, Chen W (2016a) A multilevel investigation to discover why Kandelia candel thrives in high salinity. Plant Cell Environ 39(11):2486–2497

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu X, Ren C, Zhong GY, Yang L, Li S, Liang Z (2016b) Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol 16(1):1–7

    Google Scholar 

  • Wang C, Hu S, Gardner C, Lübberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22(7):624–637

    CAS  PubMed  Google Scholar 

  • Weston AM, Zorb C, John EA, Flowers TJ (2012) High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Ann Bot 109(5):1027–1036

    Google Scholar 

  • Whiley AW, Schaffer B, Wolstenholme BN (2002) The avocado. Botany, production and uses. CAB International, Wallingford, UK

    Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Boerner A, Mock HP (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33(2):211–222

    CAS  PubMed  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140(4):1437–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YY, Ho CL, Nguyen PD, Teo SS, Harikrishna JA, Rahim RA, Wong MC (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86(2):117–122

    CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607

    CAS  PubMed  Google Scholar 

  • Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F, Zhang G (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS one 6(7):e22938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci U S A 109(30):12219–12224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H (2013) Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. J Plant Res 126(3):415–425

    CAS  PubMed  Google Scholar 

  • Wu P, Yang Q, Wang K, Zhou J, Ma J, Tang Q, Jin L, Xiao W, Jiang A, Jiang Y, Zhu L (2018) Single step genome-wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics 110(3):171–179

    CAS  PubMed  Google Scholar 

  • Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S (2019) Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J 100(1):55–67

    CAS  PubMed  Google Scholar 

  • Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK, Zhang JS (2009) Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One 4(9):e6898

    PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86(9):969–977

    CAS  Google Scholar 

  • Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122(1):121–130

    CAS  PubMed  Google Scholar 

  • Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.)

    Google Scholar 

  • Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66(19):5997–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37(3):326–339

    CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579(27):6265–6271

    CAS  PubMed  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43(8):903–910

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    CAS  PubMed  Google Scholar 

  • Yamanaka T, Miyama M, Tada Y (2009) Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening. Biosci Biotechnol Biochem 73(2):304–310

    CAS  PubMed  Google Scholar 

  • Yang Y, Yang S, Li J, Deng Y, Zhang Z, Xu S, Guo W, Zhong C, Zhou R, Shi S (2015a) Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genomics 16(1):1–12

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang S, Li J, Li X, Zhong C, Huang Y, Zhou R, Shi S (2015b) De novo assembly of the transcriptomes of two yellow mangroves, Ceriops tagal and C. zippeliana, and one of their terrestrial relatives, Pellacalyx yunnanensis. Mar Genomics 23:33–36

    PubMed  Google Scholar 

  • Yasumoto E, Adachi K, Kato M, Sano H, Sasamoto H, Baba S, Ashihara H (1999) Uptake of inorganic ions and compatible solutes in cultured mangrove cells during salt stress. In Vitro Cell Dev Biol Plant 35(1):82–85

    CAS  Google Scholar 

  • Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577(3):452–456

    CAS  PubMed  Google Scholar 

  • Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46(7):854–861

    CAS  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    CAS  PubMed  Google Scholar 

  • Yin S, Han Y, Huang L, Hong Y, Zhang G (2018) Overexpression of HvCBF7 and HvCBF9 changes salt and drought tolerance in Arabidopsis. Plant Growth Regul 85(2):281–292

    CAS  Google Scholar 

  • Yousefirad S, Soltanloo H, Ramezanpour SS, Zaynalinezhad K, Shariati V (2018) Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis. Biol Plant 62(4):775–785

    CAS  Google Scholar 

  • Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576–593

    PubMed  PubMed Central  Google Scholar 

  • Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plant 77(1):99–106

    Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98(22):12832–12836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46(2):117–126

    CAS  PubMed  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS One 7(1):e30355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17(4):341–353

    Google Scholar 

  • Zhen A, Bie Z, Huang Y, Liu Z, Li Q (2010) Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci Plant Nutr 56(2):263–271

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    CAS  PubMed  Google Scholar 

  • Zhu J, Fan Y, Shabala S, Li C, Lv C, Guo B, Xu R, Zhou M (2020) Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 21(4):1516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zobel RW, Kinraide TB, Baligar VC (2007) Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 297(1):243–254

    CAS  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using arabidopsis. Plant Physiol 124(3):941–948

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Augustine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Augustine, A., Muhammed, J., Valliyodan, B. (2023). Mangroves: An Underutilized Gene Pool to Combat Salinity. In: Sukumaran, S.T., T R, K. (eds) Conservation and Sustainable Utilization of Bioresources. Sustainable Development and Biodiversity, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-19-5841-0_10

Download citation

Publish with us

Policies and ethics