Skip to main content

Advertisement

Log in

The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The nuclear factor-κB (NF-κB) family, consisting of several transcription factors, has been implicated in the regulation of cell proliferation and invasion, as well as inflammatory reactions and tumor development. Cervical cancer (CC) results from long-term interactions of multiple factors, among which persistent high-risk human papillomavirus (hrHPV) infection is necessary. During different stages from early to late after HPV infection, the activity of NF-κB varies and plays various roles in carcinogenesis and progress of CC. As the center of the cell signaling transduction network, NF-κB can be activated through classical and non-classical pathways, and regulate the expression of downstream target genes involved in regulating the tumor microenvironment and acquiring hallmark traits of CC cells. Targeting NF-κB may help treat CC and overcome the resistance to radiation and chemotherapy. Even though NF-κB inhibitors have not been applied in clinical treatment as yet, due to limitations such as dose-restrictive toxicity and poor tumor-specificity, it is still considered to have significant therapeutic potential and application prospects. In this review, we focus on the role of NF-κB in the process of CC occurrence and hallmark capabilities acquisition. Finally, we summarize relevant NF-κB-targeted treatments, providing ideas for the prevention and treatment of CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Musunuru HB, Pifer PM, Mohindra P et al (2021) Advances in management of locally advanced cervical cancer [J]. Indian J Med Res 154(2):248–261

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Dam PA, Van Dam PJ, Rolfo C et al (2016) In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment [J]. Oncotarget 7(3):2780–2795

    Article  PubMed  Google Scholar 

  4. Higareda-Almaraz JC, Enríquez-Gasca Mdel R, Hernández-Ortiz M et al (2011) Proteomic patterns of cervical cancer cell lines, a network perspective [J]. BMC Syst Biol 5:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation [J]. Cold Spring Harb Perspect Biol 1(4):a000034

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muñoz N, Bosch FX, De Sanjosé S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med 348(6):518–527

    Article  PubMed  Google Scholar 

  7. Xu M, Katzenellenbogen RA, Grandori C et al (2010) NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity [J]. J Virol 84(21):11461–11469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Textor S, Accardi R, Havlova T et al (2011) NF-κ B-dependent upregulation of ICAM-1 by HPV16-E6/E7 facilitates NK cell/target cell interaction [J]. Int J Cancer 128(5):1104–1113

    Article  CAS  PubMed  Google Scholar 

  9. Della Fera AN, Warburton A, Coursey TL et al (2021) Persistent Hum Papillomavirus Infect [J] Viruses, 13(2)

  10. Nakahara T, Tanaka K, Ohno S et al (2015) Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1 [J]. J Virol 89(9):5040–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Du CX, Wang Y (2012) Expression of P-Akt, NFkappaB and their correlation with human papillomavirus infection in cervical carcinoma [J]. Eur J Gynaecol Oncol 33(3):274–277

    CAS  PubMed  Google Scholar 

  12. Kim SH, Oh JM, No JH et al (2009) Involvement of NF-kappaB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein [J]. Carcinogenesis 30(5):753–757

    Article  CAS  PubMed  Google Scholar 

  13. Rho SB, Lee SH, Byun HJ et al (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in Cervical Cancer [J]. Int J Mol Sci, 21(20)

  14. James MA, Lee JH, Klingelhutz AJ (2006) Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner [J]. J Virol 80(11):5301–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu F, Dai M, Xu Q et al (2018) SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis [J]. Oncogene 37(18):2394–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morgan EL, Macdonald A (2019) Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis [J]. PLoS Pathog 15(6):e1007835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu D, Miao H, Zhao Y et al (2017) NF-κB potentiates tumor growth by suppressing a novel target LPTS [J]. Cell Commun Signal 15(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  18. An J, Mo D, Liu H et al (2008) Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation [J]. Cancer Cell 14(5):394–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang S, Xu H, Zhang L et al (2020) Cervical cancer: Epidemiology, risk factors and screening [J]. Chin J Cancer Res 32(6):720–728

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li H, Chi X, Li R et al (2019) HIV-1-infected cell-derived exosomes promote the growth and progression of cervical cancer [J]. Int J Biol Sci 15(11):2438–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castro-Oropeza R, Vazquez-Santillan K, Díaz-Gastelum C et al (2020) Adipose-derived mesenchymal stem cells promote the malignant phenotype of cervical cancer [J]. Sci Rep 10(1):14205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang C, Gu W, Zhang Y et al (2017) Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro [J]. Exp Toxicol Pathol 69(6):402–407

    Article  PubMed  Google Scholar 

  23. Ma XF, Zhang J, Shuai HL et al (2015) IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells [J]. Arch Biochem Biophys 573:52–58

    Article  CAS  PubMed  Google Scholar 

  24. Hanahan D (2022) Hallmarks of Cancer: New dimensions [J]. Cancer Discov 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  25. Tilborghs S, Corthouts J, Verhoeven Y et al (2017) The role of Nuclear factor-kappa B signaling in human cervical cancer [J]. Crit Rev Oncol Hematol 120:141–150

    Article  PubMed  Google Scholar 

  26. Mirzaei S, Saghari S, Bassiri F et al (2022) NF-κB as a regulator of cancer metastasis and therapy response: a focus on epithelial-mesenchymal transition [J]. J Cell Physiol 237(7):2770–2795

    Article  CAS  PubMed  Google Scholar 

  27. Tune BXJ, Sim MS, Poh CL et al (2022) Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors [J]. J Oncol, 2022: 3249766

  28. Dong W, Sun S, Cao X et al (2017) Exposure to TNF–α combined with TGF–β induces carcinogenesis in vitro via NF-κB/Twist axis [J]. Oncol Rep 37(3):1873–1882

    Article  CAS  PubMed  Google Scholar 

  29. Kumar V, Behera R, Lohite K et al (2010) p38 kinase is crucial for osteopontin-induced furin expression that supports cervical cancer progression [J]. Cancer Res 70(24):10381–10391

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Liao Y, Liu P et al (2020) FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism [J]. Theranostics 10(15):6561–6580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mei Q, Ye LJ, Lin H et al (2020) CUL4A promotes the invasion of cervical cancer cells by regulating NF-κB signaling pathway [J]. Eur Rev Med Pharmacol Sci 24(20):10403–10409

    CAS  PubMed  Google Scholar 

  32. Zhang Y, Li N, Yuan G et al (2022) Upregulation of NOD1 and NOD2 contribute to cancer progression through the positive regulation of tumorigenicity and metastasis in human squamous cervical cancer [J]. BMC Med 20(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cai H, Yan L, Liu N et al (2020) IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway [J]. Biomed Pharmacother 123:109790

    Article  CAS  PubMed  Google Scholar 

  34. Jiang Y, Zhan H (2020) Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion [J]. Cancer Lett 468:72–81

    Article  PubMed  Google Scholar 

  35. Wu SY, Nin DS, Lee AY et al (2016) BRD4 phosphorylation regulates HPV E2-Mediated viral transcription, origin replication, and Cellular MMP-9 expression [J]. Cell Rep 16(6):1733–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang T, Shi F, Wang J et al (2017) Kallistatin suppresses Cell Proliferation and Invasion and promotes apoptosis in Cervical Cancer through blocking NF-κB signaling [J]. Oncol Res 25(5):809–817

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Li X, Xu Y et al (2021) Acetylation-stabilized chloride intracellular channel 1 exerts a tumor-promoting effect on cervical cancer cells by activating NF-κB [J]. Cell Oncol (Dordr) 44(3):557–568

    Article  CAS  PubMed  Google Scholar 

  38. Fritz RD, Radziwill G (2010) CNK1 promotes invasion of cancer cells through NF-kappaB-dependent signaling [J]. Mol Cancer Res 8(3):395–406

    Article  CAS  PubMed  Google Scholar 

  39. Ali A, Kim SH, Kim MJ et al (2017) O-GlcNAcylation of NF-κB promotes Lung Metastasis of Cervical Cancer cells via Upregulation of CXCR4 expression [J]. Mol Cells 40(7):476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erez N, Truitt M, Olson P et al (2010) Cancer-Associated fibroblasts are activated in Incipient Neoplasia to Orchestrate Tumor-promoting inflammation in an NF-kappaB-dependent manner [J]. Cancer Cell 17(2):135–147

    Article  CAS  PubMed  Google Scholar 

  41. Cao G, Zhang Z (2018) FPR1 mediates the tumorigenicity of human cervical cancer cells [J]. Cancer Manag Res 10:5855–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng R, Xiong X (2022) Effect of NMB-regulated ERK1/2 and p65 signaling pathway on proliferation and apoptosis of cervical cancer [J]. Pathol Res Pract 238:154104

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Zhang H, Gao P (2022) Metabolic reprogramming and epigenetic modifications on the path to cancer [J]. Protein Cell 13(12):877–919

    Article  CAS  PubMed  Google Scholar 

  44. Da Silva MLR, De Albuquerque B, Allyrio T et al (2021) The role of HPV-induced epigenetic changes in cervical carcinogenesis (review) [J]. Biomed Rep 15(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sen T, Sen N, Noordhuis MG et al (2012) OGDHL is a modifier of AKT-dependent signaling and NF-κB function [J]. PLoS ONE 7(11):e48770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li N, Geng F, Liang SM et al (2022) USP7 inhibits TIMP2 by up-regulating the expression of EZH2 to activate the NF-κB/PD-L1 axis to promote the development of cervical cancer [J]. Cell Signal 96:110351

    Article  CAS  PubMed  Google Scholar 

  47. Shen X, Zhao W, Zhang Y et al (2020) Long non-coding RNA-NEAT1 promotes Cell Migration and Invasion via regulating miR-124/NF-κB pathway in Cervical Cancer [J]. Onco Targets Ther 13:3265–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong Y, Wan JH, Zou W et al (2019) MiR-29a inhibits invasion and metastasis of cervical cancer via modulating methylation of tumor suppressor SOCS1 [J]. Future Oncol 15(15):1729–1744

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y, He Q, Lu Y et al (2018) MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway [J]. Cancer Cell Int 18:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan JY, Fan YJ, Wang XL et al (2017) miR-429 is involved in regulation of NF-κBactivity by targeting IKKβ and suppresses oncogenic activity in cervical cancer cells [J]. FEBS Lett 591(1):118–128

    Article  CAS  PubMed  Google Scholar 

  51. Bai L, Sun W, Han Z et al (2021) CircSND1 regulated by TNF-α promotes the Migration and Invasion of Cervical Cancer cells [J]. Cancer Manag Res 13:259–275

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun Q, Yang Z, Li P et al (2019) A novel miRNA identified in GRSF1 complex drives the metastasis via the PIK3R3/AKT/NF-κB and TIMP3/MMP9 pathways in cervical cancer cells [J], vol 10. Cell death & disease, p 636. 9

  53. Sanches JGP, Xu Y, Yabasin IB et al (2018) miR-501 is upregulated in cervical cancer and promotes cell proliferation, migration and invasion by targeting CYLD [J]. Chem Biol Interact 285:85–95

    Article  CAS  PubMed  Google Scholar 

  54. Hasan UA, Zannetti C, Parroche P et al (2013) The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the toll-like receptor 9 promoter [J]. J Exp Med 210(7):1369–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Breedveld AC, Schuster HJ, Van Houdt R et al (2022) Enhanced IgA coating of bacteria in women with Lactobacillus crispatus-dominated vaginal microbiota [J]. Microbiome 10(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anahtar MN, Gootenberg DB, Mitchell CM et al (2018) Cervicovaginal Microbiota and Reproductive Health: the Virtue of simplicity [J]. Cell Host Microbe 23(2):159–168

    Article  CAS  PubMed  Google Scholar 

  57. Africa CW, Nel J, Stemmet M (2014) Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation [J]. Int J Environ Res Public Health 11(7):6979–7000

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dong B, Huang Y, Cai H et al (2022) Prevotella as the hub of the cervicovaginal microbiota affects the occurrence of persistent human papillomavirus infection and cervical lesions in women of childbearing age via host NF-κB/C-myc [J]. J Med Virol 94(11):5519–5534

    Article  CAS  PubMed  Google Scholar 

  59. Ghareghomi S, Ahmadian S, Zarghami N et al (2021) Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways [J]. Biochimie 181:12–24

    Article  CAS  PubMed  Google Scholar 

  60. Anton L, Ferguson B, Friedman ES et al (2022) Gardnerella vaginalis alters cervicovaginal epithelial cell function through microbe-specific immune responses [J]. Microbiome 10(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lebeau A, Bruyere D, Roncarati P et al (2022) HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources [J]. Nat Commun 13(1):1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao Q, Fan T, Luo S et al (2023) Lactobacillus gasseri LGV03 isolated from the cervico-vagina of HPV-cleared women modulates epithelial innate immune responses and suppresses the growth of HPV-positive human cervical cancer cells [J]. Transl Oncol 35:101714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Micco R, Krizhanovsky V, Baker D et al (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities [J]. Nat Rev Mol Cell Biol 22(2):75–95

    Article  PubMed  Google Scholar 

  64. Birch J, Gil J (2020) Senescence and the SASP: many therapeutic avenues [J]. Genes Dev 34(23–24):1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Purohit S, Zhi W, Ferris DG et al (2020) Senescence-Associated Secretory phenotype determines survival and therapeutic response in Cervical Cancer [J]. Cancers (Basel), 12(10)

  66. Ye RD, Sun L (2015) Emerging functions of serum amyloid A in inflammation [J]. J Leukoc Biol 98(6):923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Catanzaro JM, Sheshadri N, Pan JA et al (2014) Oncogenic Ras induces inflammatory cytokine production by upregulating the squamous cell carcinoma antigens SerpinB3/B4 [J]. Nat Commun 5:3729

    Article  CAS  PubMed  Google Scholar 

  68. Laberge RM, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation [J]. Nat Cell Biol 17(8):1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang L, Bi XW, Zhu YJ et al (2018) IL-2Rα up-regulation is mediated by latent membrane protein 1 and promotes lymphomagenesis and chemotherapy resistance in natural killer/T-cell lymphoma [J]. Cancer Commun (Lond) 38(1):62

    PubMed  Google Scholar 

  70. Kirschke S, Ogunsulire I, Selvakumar B et al (2022) The metalloprotease ADAM10 generates soluble interleukin-2 receptor alpha (sCD25) in vivo [J]. J Biol Chem 298(6):101910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ning W, Muroyama A, Li H et al (2021) Differentiated daughter cells regulate stem cell proliferation and fate through intra-tissue tension [J]. Cell Stem Cell 28(3):436–452e435

    Article  CAS  PubMed  Google Scholar 

  72. Yuan S, Norgard RJ, Stanger BZ (2019) Cellular plasticity in Cancer [J]. Cancer Discov 9(7):837–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Regauer S, Reich O (2021) The origin of human papillomavirus (HPV) - induced cervical squamous cancer [J]. Curr Opin Virol 51:111–118

    Article  CAS  PubMed  Google Scholar 

  74. Liu H, Zhang X, Zhong X et al (2019) Puerarin inhibits vascular calcification of uremic rats [J]. Eur J Pharmacol 855:235–243

    Article  CAS  PubMed  Google Scholar 

  75. Zheng H, You Y, Hua M et al (2018) Chlorophyllin modulates gut microbiota and inhibits intestinal inflammation to ameliorate hepatic fibrosis in mice [J]. Front Physiol 9:1671

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ge Q, Ying J, Shi Z et al (2021) Chlorogenic acid retards cartilaginous endplate degeneration and ameliorates intervertebral disc degeneration via suppressing NF-κB signaling [J]. Life Sci 274:119324

    Article  CAS  PubMed  Google Scholar 

  77. Liu X, Qian F, Fan Q et al (2021) NF-κB activation impedes the transdifferentiation of hypertrophic chondrocytes at the growth plate of mouse embryos in diabetic pregnancy [J]. J Orthop Translat 31:52–61

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hua Q, Zhang Y, Li H et al (2022) Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium [J]. Stem Cell Res Ther 13(1):301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pang K, Lee J, Kim J et al (2022) Degradation of DRAK1 by CUL3/SPOP E3 ubiquitin ligase promotes tumor growth of paclitaxel-resistant cervical cancer cells [J], vol 13. Cell death & disease, p 169. 2

  80. Verzella D, Cornice J, Arboretto P et al (2022) The NF-κB Pharmacopeia: novel strategies to subdue an intractable target [J]. Biomedicines, 10(9)

  81. Kim YS, Sull JW, Sung HJ (2012) Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells [J]. Mol Biol Rep 39(9):8709–8716

    Article  CAS  PubMed  Google Scholar 

  82. Dang YP, Yuan XY, Tian R et al (2015) Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway [J]. Experimental Therapeutic Med 9(4):1470–1476

    Article  CAS  Google Scholar 

  83. Hung CY, Lee CH, Chiou HL et al (2019) Praeruptorin-B inhibits 12-O-Tetradecanoylphorbol-13-acetate-induced Cell Invasion by targeting AKT/NF-κB via Matrix Metalloproteinase-2/-9 expression in human cervical Cancer cells [J]. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 52(6):1255–1266

  84. Weinelt N, Karathanasis C, Smith S et al (2021) Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling [J]. J Leukoc Biol 109(2):363–371

    Article  CAS  PubMed  Google Scholar 

  85. Han HG, Lee HJ, Sim DY et al (2021) Suppression of phosphoinositide 3-kinase/phosphoinositide-dependent kinase-1/serum and glucocorticoid-induced protein kinase pathway [J]. Phytother Res 35(8):4547–4554

    Article  CAS  PubMed  Google Scholar 

  86. Ramesh J, Thilakan RC, Gopalakrishnan RM et al (2022) Ginsenoside Rg5 sensitizes paclitaxel-resistant human cervical-adeno-carcinoma cells to Paclitaxel-and enhances the Anticancer Effect of Paclitaxel [J]. Genes, 13(7)

  87. Li C, Yang S, Ma H et al (2021) Influence of icariin on inflammation, apoptosis, invasion, and tumor immunity in cervical cancer by reducing the TLR4/MyD88/NF-κB and Wnt/β-catenin pathways [J]. Cancer Cell Int 21(1):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pham CH, Lee JE, Yu J et al (2021) Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells [J]. Molecules (Basel, Switzerland), 26(16)

  89. Roy R, Pal D, Sur S et al (2019) Pongapin and Karanjin, furanoflavanoids of Pongamia pinnata, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling [J], vol 33. PTR, Phytotherapy research, pp 1084–1094. 4

  90. Yu X, Liu Y, Wang Y et al (2018) Baicalein induces cervical cancer apoptosis through the NF-κB signaling pathway [J]. Mol Med Rep 17(4):5088–5094

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu H, Lin L, Zhang Z et al (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study [J]. Signal Transduct Target Ther 5(1):209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uwe S (2008) Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks [J]. Biochem Pharmacol 75(8):1567–1579

    Article  CAS  PubMed  Google Scholar 

  93. Bravo-Cuellar A, Ortiz-Lazareno PC, Sierra-Díaz E et al (2020) Pentoxifylline sensitizes cisplatin-resistant human cervical Cancer cells to Cisplatin Treatment: involvement of mitochondrial and NF-Kappa B pathways [J]. Front Oncol 10:592706

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mahapatra E, Sengupta D, Kumar R et al (2022) Phenethylisothiocyanate Potentiates Platinum Therapy by reversing Cisplatin Resistance in Cervical Cancer [J]. Front Pharmacol 13:803114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sehnert B, Burkhardt H, Wessels JT et al (2013) NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases [J]. Proc Natl Acad Sci USA 110(41):16556–16561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. An L, Li Z, Shi L et al (2020) Inflammation-targeted Celastrol Nanodrug attenuates Collagen-Induced arthritis through NF-κB and Notch1 pathways [J]. Nano Lett 20(10):7728–7736

    Article  CAS  PubMed  Google Scholar 

  97. Porciani D, Tedeschi L, Marchetti L et al (2015) Aptamer-mediated codelivery of Doxorubicin and NF-κB Decoy enhances Chemosensitivity of pancreatic tumor cells [J]. Mol Ther Nucleic Acids 4(4):e235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tse SW, Mckinney K, Walker W et al (2021) mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8 + T cell response [J]. Mol Ther 29(7):2227–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu X, Meng L, Chen L et al (2020) IL-6 expression promoted by poly(I:C) in cervical cancer cells regulates cytokine expression and recruitment of macrophages [J]. J Cell Mol Med 24(3):2284–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu L, Wang A, Liu X et al (2022) Blocking TIGIT/CD155 signalling reverses CD8 + T cell exhaustion and enhances the antitumor activity in cervical cancer [J]. J Translational Med 20(1):280

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Health Commission of Hubei Province general program (grant No.WJ2021M104) and Provincial College students’ Innovation and Entrepreneurship Training Program (grant No.S202210487034 ).

Author information

Authors and Affiliations

Authors

Contributions

Song Deng: data curation, formal analysis, investigation, methodology , writing—original draft. Ping Yuan: investigation, validation. conceptualization, formal analysis, methodologyJun Sun: administration, supervision, validation, writing—review & editing.

Corresponding author

Correspondence to Jun Sun.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Yuan, P. & Sun, J. The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges. Mol Biol Rep 51, 538 (2024). https://doi.org/10.1007/s11033-024-09447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09447-z

Keywords

Navigation