Skip to main content
Log in

VRK1 promotes DNA-induced type I interferon production

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Type I interferons (IFNs) are an essential class of cytokines with antitumor, antiviral and immunoregulatory effects. However, over-productive the type I IFNs are tightly associated with autoimmune disorders. Thus, the induction of type I interferons is precisely regulated to maintain immune hemostasis. This study aimed to identify a novel regulator of type I interferon signaling.

Methods and results

Primary BMDMs, isolated from mice, and human cell lines (HEK293 cells, Hela cells) and murine cell line (MEF cells) were cultured to generate in vitro models. After knockdown VRK1, real-time PCR and dual-luciferase reporter assay were performed to determine the expression level of the type I IFNs and ISGs following HTDNA and Poly (dA:dT) stimulation. Additionally, cells were treated with the VRK1 inhibitor, and the impact of VRK1 inhibition was detected. Upon HTDNA and Poly (dA:dT) stimulation, knockdown of VRK1 attenuated the induction of the type I IFNs and ISGs. Consistently, VRK-IN-1, a potent and selective VRK1 inhibitor, significantly suppressed the induction of the type I IFNs and ISGs in human and murine cell lines. Further, VRK-IN-1 inhibited induction of the type I IFNs in mouse primary BMDMs. Intriguingly, VRK1 potentiated the cGAS-STING- IFN-I axis response at STING level.

Conclusions

Our study reveals a novel function of VRK1 in regulating the production of type I IFNs. VRK-IN-1 might be a potential lead compound for suppressing aberrant type I IFNs in autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

PRRs:

Pattern recognition receptors

PAMPs:

Pathogen-associated molecular patterns

VRKs:

Vaccinia-Related Kinases

BMDMs:

Bone marrow-derived macrophages

cGAS:

Cytosolic GAMP synthase

TBK1:

TANK-binding kinase 1

RIG-I:

RNA helicases retinoic acid-inducible gene I

MDA5:

Melanoma differentiation-associated gene 5

DAI:

DNA-dependent activator of IFN-regulatory factors

AIM2:

Absent in melanoma 2

References

  1. Capobianchi MR et al (2015) Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev 26(2):103–111. https://doi.org/10.1016/j.cytogfr.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  2. Kaur BP, Secord E (2021) Innate immunity. Immunol Allergy Clin North Am 41(4):535–541. https://doi.org/10.1016/j.iac.2021.07.003

    Article  PubMed  Google Scholar 

  3. Barton GM, Medzhitov R (2002) Toll-like receptors and their ligands. Curr Top Microbiol Immunol 270:81–92. https://doi.org/10.1007/978-3-642-59430-4_5

    Article  CAS  PubMed  Google Scholar 

  4. Thoresen D et al (2021) The molecular mechanism of RIG-I activation and signaling. Immunol Rev 304(1):154–168. https://doi.org/10.1111/imr.13022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505. https://doi.org/10.1038/nature06013

    Article  CAS  PubMed  Google Scholar 

  6. Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol 23(1):10–20. https://doi.org/10.1016/j.coi.2010.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun L et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. https://doi.org/10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  8. Kumagai Y, Takeuchi O, Akira S (2008) TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 60(7):795–804. https://doi.org/10.1016/j.addr.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  9. Ahlers LR, Goodman AG (2016) Nucleic acid sensing and innate immunity: signaling pathways controlling viral pathogenesis and autoimmunity. Curr Clin Microbiol Rep 3(3):132–141. https://doi.org/10.1007/s40588-016-0043-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Xu P (2023) Cellular functions of cGAS-STING signaling. Trends Cell Biol 33(8):630–648. https://doi.org/10.1016/j.tcb.2022.11.001

    Article  CAS  PubMed  Google Scholar 

  11. Decout A et al (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21(9):548–569. https://doi.org/10.1038/s41577-021-00524-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon J, Bakhoum SF (2020) The cytosolic DNA-Sensing cGAS-STING pathway in Cancer. Cancer Discov 10(1):26–39. https://doi.org/10.1158/2159-8290.Cd-19-0761

    Article  CAS  PubMed  Google Scholar 

  13. Pan M et al (2023) UXT attenuates the CGAS-STING1 signaling by targeting STING1 for autophagic degradation. Autophagy 19(2):440–456. https://doi.org/10.1080/15548627.2022.2076192

    Article  CAS  PubMed  Google Scholar 

  14. Pan M et al (2024) CSNK1A1/CK1α suppresses autoimmunity by restraining the CGAS-STING1 signaling. Autophagy 20(2):311–328. https://doi.org/10.1080/15548627.2023.2256135

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y et al (2022) Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: biologic function, mechanisms and clinical prospection. Autoimmun Rev 21(9):103155. https://doi.org/10.1016/j.autrev.2022.103155

    Article  CAS  PubMed  Google Scholar 

  16. Skopelja-Gardner S, An J, Elkon KB (2022) Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 18(9):558–572. https://doi.org/10.1038/s41581-022-00589-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klerkx EP, Lazo PA, Askjaer P (2009) Emerging biological functions of the vaccinia-related kinase (VRK) family. Histol Histopathol 24(6):749–759. https://doi.org/10.14670/hh-24.749

    Article  CAS  PubMed  Google Scholar 

  18. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  19. Valbuena A, López-Sánchez I, Lazo PA (2008) Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE 3(2):e1642. https://doi.org/10.1371/journal.pone.0001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du N, Zhang B, Zhang Y (2023) Downregulation of VRK1 inhibits progression of lung squamous cell carcinoma through DNA damage. Can Respir J 2023(p 4533504). https://doi.org/10.1155/2023/4533504

  21. Chang X et al (2023) Downregulating vaccinia-related kinase 1 by luteolin suppresses ovarian cancer cell proliferation by activating the p53 signaling pathway. Gynecol Oncol 173:31–40. https://doi.org/10.1016/j.ygyno.2023.04.003

    Article  CAS  PubMed  Google Scholar 

  22. Shields JA et al (2022) VRK1 is a synthetic-Lethal Target in VRK2-Deficient glioblastoma. Cancer Res 82(21):4044–4057. https://doi.org/10.1158/0008-5472.Can-21-4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. So J et al (2022) VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 7(19). https://doi.org/10.1172/jci.insight.158755

  24. Nichols RJ, Wiebe MS, Traktman P (2006) The vaccinia-related kinases phosphorylate the N’ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell 17(5):2451–2464. https://doi.org/10.1091/mbc.e05-12-1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serafim RAM et al (2019) Development of pyridine-based inhibitors for the human vaccinia-related kinases 1 and 2. ACS Med Chem Lett 10(9):1266–1271. https://doi.org/10.1021/acsmedchemlett.9b00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weischenfeldt J, Porse B, Protoc CSH (2008) 2008: p. pdb.prot5080. https://doi.org/10.1101/pdb.prot5080

  27. Zheng W et al (2021) How the Innate Immune DNA sensing cGAS-STING pathway is involved in Autophagy. Int J Mol Sci 22(24). https://doi.org/10.3390/ijms222413232

  28. Kang TH et al (2007) Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol 27(24):8533–8546. https://doi.org/10.1128/mcb.00018-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sevilla A et al (2004) Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem 279(26):27458–27465. https://doi.org/10.1074/jbc.M401009200

    Article  CAS  PubMed  Google Scholar 

  30. Sevilla A et al (2004) c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 23(55):8950–8958. https://doi.org/10.1038/sj.onc.1208015

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Borges S, Lazo PA (2000) The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein Oncogene, 19(32): p. 3656-64. https://doi.org/10.1038/sj.onc.1203709

  32. López-Sánchez I et al (2014) VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage. FEBS Lett 588(5):692–700. https://doi.org/10.1016/j.febslet.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  33. Jiang J et al (2020) Type I interferons in the Pathogenesis and treatment of Autoimmune diseases. Clin Rev Allergy Immunol 59(2):248–272. https://doi.org/10.1007/s12016-020-08798-2

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y et al (2019) STING: a master regulator in the cancer-immunity cycle. Mol Cancer 18(1):152. https://doi.org/10.1186/s12943-019-1087-y

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chasset F, Dayer JM, Chizzolini C (2021) Type I interferons in systemic autoimmune diseases: distinguishing between afferent and efferent functions for Precision Medicine and Individualized Treatment. Front Pharmacol 12:633821. https://doi.org/10.3389/fphar.2021.633821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20221029).

Author information

Authors and Affiliations

Authors

Contributions

M.P. and H.C. wrote the main manuscript text and Z.F. and X.W. prepared Figs. 1, 2, 3, 4, 5 and 6. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hao Cheng or Mingyu Pan.

Ethics declarations

Ethical approval

All animal experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, with approval of the Institutional Ethics Committee of China Pharmaceutical University (Approval Number 2022–04–002).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Wang, X., Cheng, H. et al. VRK1 promotes DNA-induced type I interferon production. Mol Biol Rep 51, 453 (2024). https://doi.org/10.1007/s11033-024-09414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09414-8

Keywords

Navigation