Skip to main content
Log in

Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars.

Methods

In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

Results

Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells.

Conclusion

Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ABA:

Abscisic acid

ABRE:

Abscisic acid response element

AOC:

Allene oxide cyclase

A.thaliana :

Arabidopsis thaliana

ARE:

Antioxidant response element

Cd:

Cadmium

E. coli :

Escherichia coli

FMN:

Flavin mononucleotide

GA:

Gibberellic acid

GMQE:

Global model quality estimate

H2O2 :

Hydrogen peroxide

ICP- MS:

Inductively coupled plasma mass spectrometry

JA:

Jasmonic acid

MBS:

Drought stress response element

MS:

Murashige and Skoog

NJ:

Neighbor- Joining

OPR:

The 12- oxo- phytodienoic acid reductas

OYE_like_FMN:

Old yellow enzyme- like FMN

OYEs:

Old yellow enzymes

OPR3:

OPC- 8:0 by 12- oxophytodienoate reductase 3

O3 :

Ozone

PPI:

Protein- protein interaction

PCR:

Polymerase Chain Reaction

qRT- PCR:

Quantitative real time polymerase chain reaction

SD- Ura:

Synthetic dropout - Uracil medium

UBQ:

Ubiquitin

UV:

Ultraviolet

4CLL4:

4- coumarate- CoA ligase- like4

4CLL8:

4- coumarate- CoA ligase- like 8

4CLL:

4- coumarate: CoA ligase- like

References

  1. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Lannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006

    Article  CAS  Google Scholar 

  2. Li X, Zhang X, Yang Y, Li B, Wu Y, Sun H, Yang Y (2016) Cadmium accumulation characteristics in turnip landraces from china and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7:1862. https://doi.org/10.3389/fpls.2016.01862

    Article  PubMed Central  PubMed  Google Scholar 

  3. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60(9):2677–2688. https://doi.org/10.1093/jxb/erp119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281(1–3):165–175. https://doi.org/10.1016/S0048-9697(01)00844-0

    Article  CAS  PubMed  Google Scholar 

  5. Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H (2010) Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 198(1):26–32. https://doi.org/10.1016/j.toxlet.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Zhang M, Zhang J, Huang L, Chen X, Jiang M, Tan M (2020) Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. Plant Physiol Bioch 155:429–436. https://doi.org/10.1016/j.plaphy.2020.07.046

    Article  CAS  Google Scholar 

  7. Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021) Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690. https://doi.org/10.1016/j.chemosphere.2021.129690

    Article  CAS  PubMed  Google Scholar 

  8. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  9. Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). Int J Phytoremediat 15(6):513–521. https://doi.org/10.1080/15226514.2012.702807

    Article  CAS  Google Scholar 

  10. Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN (2020) Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. Chemosphere 261:127728. https://doi.org/10.1016/j.chemosphere.2020.127728

    Article  CAS  PubMed  Google Scholar 

  11. Meng YT, Zhang XL, Wu Q, Shen RF, Zhu XF (2022) Transcription factor ANAC004 enhances Cd tolerance in Arabidopsis thaliana by regulating cell wall fixation, translocation and vacuolar detoxification of Cd, ABA accumulation and antioxidant capacity. J Hazard Mater 436:129121. https://doi.org/10.1016/j.jhazmat.2022.129121

    Article  CAS  PubMed  Google Scholar 

  12. Abbas T, Fan R, Hussain S, Sattar A, Khalid S, Butt M, Shahzad U, Muhammad Atif H, Batool M, Ullah S, Li Y, Al-Hashimi A, Elshikh MS, Al-Yahyai R (2022) Protective effect of jasmonic acid and potassium against cadmium stress in peas (Pisum sativum L.). Saudi J Biol Sci 29(44):2626–2633. https://doi.org/10.1016/j.sjbs.2021.12.051

    Article  CAS  PubMed  Google Scholar 

  13. Liu YK, Mu XH, Wang HX, Yan GJ (2012) A novel method for extracting green fractional vegetation cover from digital images. J Veg Sci 23(3):406–418. https://doi.org/10.1111/j.1654-1103.2011.01373.x

    Article  Google Scholar 

  14. Mou Y, Liu Y, Tian S, Guo Q, Wen WC (2019) Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L.). Int J Mol Sci 20(8):1914. https://doi.org/10.3390/ijms20081914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Raine AR, Scrutton NS, Mathews FS (1994) On the evolution of alternate core packing in eightfold beta/alpha-barrels. Protein Sci 3(10):1889–1892. https://doi.org/10.1002/pro.5560031028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu S, Sun R, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Zhu L, Feng H, Zhu H (2020) Genome-wide analysis of OPR family genes in cotton identified a role for GhOPR9 in Verticillium dahliae resistance. Genes (Basel) 11(10):1134. https://doi.org/10.3390/genes11101134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li W, Liu B, Yu L, Feng D, Wang H, Wang J (2009) Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 9:90. https://doi.org/10.1186/1471-2148-9-90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Asfaw KG, Liu Q, Eghbalian R, Purper S, Akaberi S, Dhakarey R, Munch SW, Wehl I, Brase S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P (2022) The jasmonate biosynthesis gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. Plant Sci 316:111156. https://doi.org/10.1016/j.plantsci.2021.111156

    Article  CAS  PubMed  Google Scholar 

  19. Jang S, Cho K, Shibato J, Han O, Iwahashi H, Tamogami S, Zargar SM, Kubo A, Masuo Y, Agrawal GK, Rakwal R (2009) Rice OsOPRs: Transcriptional profiling responses to diverse environmental stimuli and biochemical analysis of OsOPR1. J Plant Biol 52(3):229–243. https://doi.org/10.1007/s12374-009-9022-1

    Article  CAS  Google Scholar 

  20. Da Costa MVJ, Ramegowda V, Sreeman S, Nataraja KN (2021) Targeted phytohormone profiling identifies potential regulators of spikelet sterility in rice under combined drought and heat stress. Int J Mol Sci 22(21):11690. https://doi.org/10.3390/ijms222111690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Agrawal GK, Jwa N-S, Shibato J, Han O, Iwahashi H, Rakwal R (2003) Diverse environmental cues transiently regulate OsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and development. Biochem Bioph Res Co 310(4):1073–1082. https://doi.org/10.1016/j.bbrc.2003.09.123

    Article  CAS  Google Scholar 

  22. Li W, Zhou F, Liu B, Feng D, He Y, Qi K, Wang H, Wang J (2011) Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acid reductase gene family in rice. Plant Cell Rep 30(6):981–995. https://doi.org/10.1007/s00299-011-1002-5

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Simmons C, Yalpani N, Crane V, Wilkinson H, Kolomiets M (2005) Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays. Plant Mol Biol 59(2):323–343. https://doi.org/10.1007/s11103-005-8883-z

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang XD, Sun JY, You YY, Song JB, Yang ZM (2018) Identification of Cd-responsive RNA helicase genes and expression of a putative BnRH 24 mediated by miR158 in canola (Brassica napus). Ecotoxicol Environ Saf 157:159–168. https://doi.org/10.1016/j.ecoenv.2018.03.081

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Zaynab M, Ghramh HA, Sharif Y, Fiaz S, Al-Yahyai R, Alahdal MA, Qari SH, Hessini K, Huang X, Li S (2023) Expression profiling of DUF599 genes revealed their role in regulating abiotic stress response in solanum tuberosum. J King Saud Univ Sci 35(1):102368. https://doi.org/10.1016/j.jksus.2022.102368

    Article  Google Scholar 

  28. Shi Y, Jiang WJ, Li MY, Jiang N, Huang YY, Wang MT, Du ZY, Chen J, Li JH, Wu LY, Zhong M, Yang J, Huang J (2023) Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L). Int J Biol Macromol 245:125607. https://doi.org/10.1016/j.ijbiomac.2023.125607

    Article  CAS  PubMed  Google Scholar 

  29. Luo J-S, Xiao Y, Yao J, Wu Z, Yang Y, Ismail AM, Zhang Z (2020) Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants. Front Plant Sci 11:217. https://doi.org/10.3389/fpls.2020.00217

    Article  PubMed Central  PubMed  Google Scholar 

  30. Duan W, Xue B, He Y, Liao S, Li X, Li X, Liang Y-K (2023) Genome-wide identification and expression pattern analysis of dirigent members in the genus Oryza. Int J Mol Sci 24(8):7189. https://doi.org/10.3390/ijms24087189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim EJ, Hong WJ, Tun W, An G, Kim ST, Kim YJ, Jung KH (2021) Interaction of OsRopGEF3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Front Plant Sci 12:661352. https://doi.org/10.3389/fpls.2021.661352

    Article  PubMed Central  PubMed  Google Scholar 

  32. Li Z-S, Szczypka M, Lu Y-P, Thiele D, Rea P (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517. https://doi.org/10.1074/jbc.271.11.6509

    Article  CAS  PubMed  Google Scholar 

  33. Hovland P, Flick J, Johnston M, Sclafani RA (1989) Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose. Gene 83(1):57–64. https://doi.org/10.1016/0378-1119(89)90403-4

    Article  CAS  PubMed  Google Scholar 

  34. Ruta LL, Lin YF, Kissen R, Nicolau I, Neagoe AD, Ghenea S, Bones AM, Farcasanu IC (2017) Anchoring plant metallothioneins to the inner face of the plasma membrane of cells leads to heavy metal accumulation. PLoS ONE 12(5):e0178393. https://doi.org/10.1371/journal.pone.017

    Article  PubMed Central  PubMed  Google Scholar 

  35. Meng XX, Li WF, Shen RF, Lan P (2022) Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. J Hazard Mater 422(1873–3336):126913. https://doi.org/10.1016/j.jhazmat.2021.126913

    Article  CAS  PubMed  Google Scholar 

  36. Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227(3):517–526. https://doi.org/10.1007/s00425-007-0635-7

    Article  CAS  PubMed  Google Scholar 

  37. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2016) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wang Y, Yuan G, Yuan S, Duan W, Wang P, Bai J, Zhang F, Gao S, Zhang L, Zhao C (2016) TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.). Biochem Bioph Res Co 470(1):233–238. https://doi.org/10.1016/j.bbrc.2016.01.043

    Article  CAS  Google Scholar 

  39. Doug Chung DW, Le RKG (2013) Genome-wide analysis of gene expression. Encyclopedia of Biological Chemistry. Academic Press, pp 369–374

    Chapter  Google Scholar 

  40. Chen A, Liu T, Wang Z, Chen X (2022) Plant root suberin: a layer of defence against biotic and abiotic stresses. Front Plant Sci 13:1056008. https://doi.org/10.3389/fpls.2022.1056008

    Article  PubMed Central  PubMed  Google Scholar 

  41. Li T, Wang X, Elango D, Zhang W, Li M, Zhang F, Pan Q, Wu Y (2022) Genome-wide identification, phylogenetic and expression pattern analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.). PeerJ 10:e14087. https://doi.org/10.7717/peerj.14087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Song B, Luo X, Luo X, Liu Y, Niu Z, Zeng X (2022) Learning spatial structures of proteins improves protein-protein interaction prediction. Brief Bioinform 23(2):bbab558. https://doi.org/10.1093/bib/bbab558

    Article  CAS  PubMed  Google Scholar 

  43. Rabbani G, Baig MH, Ahmad K, Choi I (2018) Protein-protein interactions and their role in various diseases and their prediction techniques. Curr Protein Pept Sc 19(10):948–957. https://doi.org/10.2174/1389203718666170828122927

    Article  CAS  Google Scholar 

  44. Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12(7):1041–1061. https://doi.org/10.1105/tpc.12.7.1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Schaller F, Biesgen C, Mussig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210(6):979–984. https://doi.org/10.1007/s004250050706

    Article  CAS  PubMed  Google Scholar 

  46. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. P Natl Acad Sci USA 97(19):10625–10630. https://doi.org/10.1073/pnas.190264497

    Article  CAS  Google Scholar 

  47. Koo AJK, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in arabidopsis. J Biol Chem 281(44):33511–33520. https://doi.org/10.1074/jbc.M607854200

    Article  CAS  PubMed  Google Scholar 

  48. Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59(2):403–419. https://doi.org/10.1093/jxb/erm325

    Article  CAS  PubMed  Google Scholar 

  49. Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, Minami E, Takano M, Yamane H, Iino M (2013) Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J 74(2):226–238. https://doi.org/10.1111/tpj.12115

    Article  CAS  PubMed  Google Scholar 

  50. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845. https://doi.org/10.1038/nrg3055

    Article  CAS  PubMed  Google Scholar 

  51. Strucko T, Buron LD, Jarczynska ZD, Nødvig CS, Mølgaard L, Halkier BA, Mortensen UH (2017) CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast. Sci Rep 7:41431. https://doi.org/10.1038/srep41431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang FH, Qiao K, Shen YH, Wang H, Chai TY (2021) Characterization of the gene family encoding metal tolerance proteins in Triticum urartu: Phylogenetic, transcriptional, and functional analyses. Metallomics 13(7):mfab038. https://doi.org/10.1093/mtomcs/mfab038

    Article  PubMed  Google Scholar 

  53. Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang LX (2018) Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B 19(2):130–146. https://doi.org/10.1631/jzus.B1700191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Terra-Matos J, Teixeira MO, Santos-Pereira C, Noronha H, Domingues L, Sieiro C, Gerós H, Chaves SR, Sousa MJ, Côrte-Real M (2022) Saccharomyces cerevisiae cells lacking the zinc vacuolar transporter Zrt3 display improved ethanol productivity in lignocellulosic hydrolysates. J Fungi (Basel) 8(1):78. https://doi.org/10.3390/jof8010078

    Article  CAS  PubMed  Google Scholar 

  55. Martins D, English AM (2014) Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol 2:308–313. https://doi.org/10.1016/j.redox.2013.12.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fukushima A, Iwasa M, Nakabayashi R, Kobayashi M, Nishizawa T, Okazaki Y, Saito K, Kusano M (2017) Effects of combined low glutathione with mild oxidative and low phosphorus stress on the metabolism of Arabidopsis thaliana. Front Plant Sci 8:1464. https://doi.org/10.3389/fpls.2017.01464

    Article  PubMed Central  PubMed  Google Scholar 

  57. Khan ZH, Gao M, Qiu W, Islam MS, Song Z (2020) Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 246:125701. https://doi.org/10.1016/j.chemosphere.2019.125701

    Article  CAS  PubMed  Google Scholar 

  58. Fakhri Y, Bjørklund G, Bandpei AM, Chirumbolo S, Keramati H, Pouya RH, Asadi A, Amanidaz N, Sarafraz M, Sheikhmohammad A, Alipour M (2018) Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: a systematic review and carcinogenic risk assessment. Food Che Toxicol 113:267–277. https://doi.org/10.1016/j.fct.2018.01.018

    Article  CAS  Google Scholar 

  59. Huang K, Deng Y, Yuan W, Geng J, Wang G, Zou F (2020) Phospholipase D1 ameliorates apoptosis in chronic renal toxicity caused by low-dose cadmium exposure. Biomed Res Int 2020:7091053. https://doi.org/10.1155/2020/7091053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Molr Sci 21(4):1446. https://doi.org/10.3390/ijms21041446

    Article  CAS  Google Scholar 

  61. Zhao Z, Kou M, Zhong R, Xia C, Christensen MJ, Zhang X (2021) Transcriptome analysis revealed plant hormone biosynthesis and response pathway modification by Epichloë gansuensis in Achnatherum inebrians under different soil moisture availability. J Fungi 7(8):640. https://doi.org/10.3390/jof7080640

    Article  CAS  Google Scholar 

  62. Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21(11):3847. https://doi.org/10.3390/ijms21113847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Schall P, Marutschke L, Grimm B (2020) The flavoproteome of the model plant Arabidopsis thaliana. Int J Mol Sci 21(15):5371. https://doi.org/10.3390/ijms21155371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoi Environ Safe 98:203–209. https://doi.org/10.1016/j.ecoenv.2013.08.019

    Article  CAS  Google Scholar 

  65. Ariño J, Ramos J, Sychrová H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95–120. https://doi.org/10.1128/MMBR.00042-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Li H, Mu Y, Chang X, Li G, Dong Z, Sun J, Jin S, Wang X, Zhang L, Jin S (2022) Functional verification and screening of protein interacting with the slPHB3. Plant Signal Behav 17(1):2025678. https://doi.org/10.1080/15592324.2022.2025678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Cao HW, Zhao YN, Liu XS, Rono JK, Yang ZM (2022) A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops. Environ Pollut 311:120058. https://doi.org/10.1016/j.envpol.2022.120058

    Article  CAS  PubMed  Google Scholar 

  68. Lage P, Sampaio-Marques B, Ludovico P, Mira NP, Mendes-Ferreira A (2019) Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of Saccharomyces cerevisiae to stress induced by sulfur dioxide. Microbial Cell 6(11):509–523. https://doi.org/10.15698/mic2019.11.697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Harari Y, Zadok-Laviel S, Kupiec M (2017) Long telomeres do not affect cellular fitness in yeast. MBio 8:e01314–e01317. https://doi.org/10.1128/mBio.01314-17

    Article  PubMed Central  PubMed  Google Scholar 

  70. Balaban B, Yılmaz Şahin U, Alkim C, Topaloğlu A, Kısakesen HC, Cakar ZP (2019) Evolutionary engineering of an iron-resistant saccharomyces cerevisiae mutant and its physiological and molecular characterization. Microorganisms 8:43. https://doi.org/10.3390/microorganisms8010043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Giese H, Azizan A, Kümmel A, Liao A, Peter CP, Fonseca JA, Hermann R, Duarte TM, Büchs J (2014) Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnol Bioeng 111(2):295–308. https://doi.org/10.1002/bit.25015

    Article  CAS  PubMed  Google Scholar 

  72. Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84(3):351–358. https://doi.org/10.1002/bit.10740

    Article  CAS  PubMed  Google Scholar 

  73. Lanclos VC, Coelho JT, Cleveland CS, Hyer AJ, McCallum MC, Savoie ER, Kosiba S, Thrash JC (2022) A cure for physiological characterization of bacterioplankton in liquid culture. J Microbiol Biol Edu 23(2):e00068–e00090. https://doi.org/10.1128/jmbe.00068-22

    Article  Google Scholar 

  74. Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman J-F, Cuypers A (2019) Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biol 19(1):271. https://doi.org/10.1186/s12870-019-1859-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F (2019) Molecular cloning and functional analysis of 4-Coumarate:CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biol 19(1):231. https://doi.org/10.1186/s12870-019-1812-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Raja Krishna Kumar G, Tangirala SJ (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23. https://doi.org/10.1186/1472-6750-10-23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Gechev T, Petrov V (2020) Reactive oxygen species and abiotic stress in plants. Int J Mol Sci 21(20):7433. https://doi.org/10.3390/ijms21207433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zhang H-X, Zhu W-C, Feng X-H, Jin J-H, Wei A-M, Gong Z-H (2020) Transcription factor CaSBP12 negatively regulates salt stress tolerance in pepper (Capsicum annuum L.). Int J Mol Sci 21(2):444. https://doi.org/10.3390/ijms21020444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Yuan J, Sun K, Deng-Wang M-Y, Dai C-C (2016) The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. Al12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea. Front Plant Sci 7:361. https://doi.org/10.3389/fpls.2016.00361

    Article  PubMed Central  PubMed  Google Scholar 

  80. Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH (2019) Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings. Sci Rep 9(1):16080. https://doi.org/10.1038/s41598-019-52646-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Dong W, Wang M, Fei X, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161(3):1217–1228. https://doi.org/10.1104/pp.112.211854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870383) and Sichuan Provincial Financial “1 + 3” Project (2021ZYGG-002).

Author information

Authors and Affiliations

Authors

Contributions

YS: Conceptualization. RW, LW: Methodology. RW, ML: Formal analysis and investigation. LW, ZD: Writing—original draft preparation. YJ, JH, WJ: Writing—review and editing. JC, JH, BH: Funding acquisition. MZ, JY: Supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ji Chen or Jin Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

All authors have their consent to participate.

Consent for publication

All authors have their consent to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 20 KB)

Supplementary file2 (XLSX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, R., Li, M. et al. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 51, 198 (2024). https://doi.org/10.1007/s11033-023-09159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09159-w

Keywords

Navigation