Skip to main content

Advertisement

Log in

Vitamin D and potential effects on cancers: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is characterized by the abnormal and uncontrollable division and growth of cells that can infiltrate tissues and alter normal physiological function, which will become crucial and life-threatening if left untreated. Cancer can be a result of genetics, such as mutations or environmental causes, including smoking, lack of physical activity, as well as nutritional imbalance in the body. Vitamin D is one of the foremost nutrients that play a crucial role in a variety of biochemical pathways, and it is an important key factor in several diseases. Vitamin D is an essential nutrient for preventing malignancies and a complementary treatment for cancer through direct and indirect biochemical pathways. In this article, we summarized the correlation between vitamin D and various cancers using an extensive search on PubMed, Google Scholar, and Scopus. This paper reviews the role of vitamin D in different types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

Not applicable.

Abbreviations

EMT:

Epithelial-mesenchymal transition

HDAC2:

Histone deacetylase 2

CLL:

Chronic lymphoid leukemia

VDR:

Vitamin D receptor

UVB:

Ultraviolet blue

CML:

Chronic myeloid leukemia

AML:

Acute myeloid leukemia

TXNIP:

Thioredoxin-interacting protein

References

  1. Christakos S et al (2010) Vitamin D: metabolism. Endocrinol Metab Clin North Am 39(2):243–253 (table of contents)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlberg C (2019) Vitamin D: a micronutrient regulating genes. Curr Pharm Des 25(15):1740–1746

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Zhu J, DeLuca HF (2012) Where is the vitamin D receptor? Arch Biochem Biophys 523(1):123–133

    Article  CAS  PubMed  Google Scholar 

  4. Akimbekov NS et al (2022) Vitamin D and phosphate interactions in health and disease. Adv Exp Med Biol 1362:37–46

    Article  CAS  PubMed  Google Scholar 

  5. Holick MF et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    Article  CAS  PubMed  Google Scholar 

  6. Chang EM et al (2014) Association between sex steroids, ovarian reserve, and vitamin D levels in healthy nonobese women. J Clin Endocrinol Metab 99(7):2526–2532

    Article  CAS  PubMed  Google Scholar 

  7. Zanatta L et al (2011) Nongenomic and genomic effects of 1alpha,25(OH)2 vitamin D3 in rat testis. Life Sci 89(15–16):515–523

    Article  CAS  PubMed  Google Scholar 

  8. Zhao D et al (2017) Serum vitamin D and sex hormones levels in men and women: the Multi-Ethnic Study of Atherosclerosis (MESA). Maturitas 96:95–102

    Article  CAS  PubMed  Google Scholar 

  9. Bergengren O et al (2023) 2022 update on prostate cancer epidemiology and risk factors—a systematic review. Eur Urol 84(2):191–206

    Article  PubMed  Google Scholar 

  10. Song ZY et al (2018) Circulating vitamin D level and mortality in prostate cancer patients: a dose-response meta-analysis. Endocr Connect 7(12):R294–R303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Capiod T et al (2018) Do dietary calcium and vitamin D matter in men with prostate cancer? Nat Rev Urol 15(7):453–461

    Article  CAS  PubMed  Google Scholar 

  12. Bao BY, Yeh SD, Lee YF (2006) 1alpha,25-dihydroxyvitamin D3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis 27(1):32–42

    Article  CAS  PubMed  Google Scholar 

  13. Woo TC et al (2005) Pilot study: potential role of vitamin D (Cholecalciferol) in patients with PSA relapse after definitive therapy. Nutr Cancer 51(1):32–36

    Article  CAS  PubMed  Google Scholar 

  14. Bernichtein S et al (2017) Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation. Cancer Res 77(2):355–365

    Article  CAS  PubMed  Google Scholar 

  15. Barreto AM et al (2000) 25-Hydroxyvitamin D3, the prohormone of 1,25-dihydroxyvitamin D3, inhibits the proliferation of primary prostatic epithelial cells. Cancer Epidemiol Biomarkers Prev 9(3):265–270

    CAS  PubMed  Google Scholar 

  16. Gupta D et al (2009) Vitamin D and prostate cancer risk: a review of the epidemiological literature. Prostate Cancer Prostatic Dis 12(3):215–226

    Article  CAS  PubMed  Google Scholar 

  17. Tuohimaa P et al (2004) Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int J Cancer 108(1):104–108

    Article  CAS  PubMed  Google Scholar 

  18. Gao J et al (2018) Circulating vitamin D concentration and risk of prostate cancer: a dose-response meta-analysis of prospective studies. Ther Clin Risk Manag 14:95–104

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wilkinson L, Gathani T (2022) Understanding breast cancer as a global health concern. Br J Radiol 95(1130):20211033

    Article  PubMed  Google Scholar 

  20. Mittal MK et al (2008) In vivo binding to and functional repression of the VDR gene promoter by SLUG in human breast cells. Biochem Biophys Res Commun 372(1):30–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X et al (2018) miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 37(25):3426–3439

    Article  CAS  PubMed  Google Scholar 

  22. Larriba MJ, Garcia de Herreros A, Munoz A (2016) Vitamin D and the epithelial to mesenchymal transition. Stem Cells Int 2016:6213872

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lopes N et al (2012) 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res 32(1):249–257

    CAS  PubMed  Google Scholar 

  24. Wilmanski T et al (2016) 1alpha,25-dihydroxyvitamin D inhibits the metastatic capability of MCF10CA1a and MDA-MB-231 cells in an in vitro model of breast to bone metastasis. Nutr Cancer 68(7):1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koli K, Keski-Oja J (2000) 1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasion-associated proteases in cultured malignant cells. Cell Growth Differ 11(4):221–229

    CAS  PubMed  Google Scholar 

  26. Li J et al (2021) Vitamin D regulates CXCL12/CXCR4 and epithelial-to-mesenchymal transition in a model of breast cancer metastasis to lung. Endocrinology. https://doi.org/10.1210/endocr/bqab049

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anisiewicz A et al (2018) Unfavorable effect of calcitriol and its low-calcemic analogs on metastasis of 4T1 mouse mammary gland cancer. Int J Oncol 52(1):103–126

    CAS  PubMed  Google Scholar 

  28. Anisiewicz A et al (2019) Calcitriol analogues decrease lung metastasis but impair bone metabolism in aged ovariectomized mice bearing 4T1 mammary gland tumours. Aging Dis 10(5):977–991

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vanhevel J et al (2022) The role of vitamin D in breast cancer risk and progression. Endocr Relat Cancer 29(2):R33–R55

    Article  CAS  PubMed  Google Scholar 

  30. Filip-Psurska B et al (2022) Vitamin D, Th17 lymphocytes, and breast cancer. Cancers 14(15):3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishnan AV et al (2010) Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 151(1):32–42

    Article  CAS  PubMed  Google Scholar 

  32. Swami S et al (2011) Inhibitory effects of calcitriol on the growth of MCF-7 breast cancer xenografts in nude mice: selective modulation of aromatase expression in vivo. Horm Cancer 2(3):190–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vink-van Wijngaarden T et al (1994) Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogues and tamoxifen. Cancer Res 54(21):5711–5717

    CAS  PubMed  Google Scholar 

  34. Lim ST et al (2018) Synergistic anticancer effects of ruxolitinib and calcitriol in estrogen receptor-positive, human epidermal growth factor receptor 2-positive breast cancer cells. Mol Med Rep 17(4):5581–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Friedrich M et al (2018) Effects of combined treatment with vitamin D and COX2 inhibitors on breast cancer cell lines. Anticancer Res 38(2):1201–1207

    CAS  PubMed  Google Scholar 

  36. Segovia-Mendoza M et al (2017) The addition of calcitriol or its synthetic analog EB1089 to lapatinib and neratinib treatment inhibits cell growth and promotes apoptosis in breast cancer cells. Am J Cancer Res 7(7):1486–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tavera-Mendoza LE et al (2017) Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci USA 114(11):E2186–E2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Estebanez N et al (2018) Vitamin D exposure and Risk of Breast Cancer: a meta-analysis. Sci Rep 8(1):9039

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song D et al (2019) Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging 11(24):12708–12732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vaughan-Shaw PG et al (2017) The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br J Cancer 116(8):1092–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hossain S et al (2019) Vitamin D and breast cancer: a systematic review and meta-analysis of observational studies. Clin Nutr ESPEN 30:170–184

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crew KD et al (2019) Randomized double-blind placebo-controlled biomarker modulation study of vitamin D supplementation in premenopausal women at high risk for breast cancer (SWOG S0812). Cancer Prev Res 12(7):481–490

    Article  CAS  Google Scholar 

  43. Crew KD et al (2009) Association between plasma 25-hydroxyvitamin D and breast cancer risk. Cancer Prev Res 2(6):598–604

    Article  CAS  Google Scholar 

  44. Qin B et al (2020) Intake of vitamin D and calcium, sun exposure, and risk of breast cancer subtypes among black women. Am J Clin Nutr 111(2):396–405

    Article  PubMed  Google Scholar 

  45. Manson JE et al (2019) Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 380(1):33–44

    Article  CAS  PubMed  Google Scholar 

  46. Chandler PD et al (2020) Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open 3(11):e2025850

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lappe J et al (2017) Effect of vitamin D and calcium supplementation on cancer incidence in older women: a randomized clinical trial. JAMA 317(12):1234–1243

    Article  CAS  PubMed  Google Scholar 

  48. Scragg RKR (2019) Overview of results from the Vitamin D assessment (ViDA) study. J Endocrinol Investig 42(12):1391–1399

    Article  CAS  Google Scholar 

  49. Arnaout A et al (2019) Randomized window of opportunity trial evaluating high-dose vitamin D in breast cancer patients. Breast Cancer Res Treat 178(2):347–356

    Article  CAS  PubMed  Google Scholar 

  50. Li Z et al (2021) Effect of vitamin D supplementation on risk of breast cancer: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 8:655727

    Article  PubMed  PubMed Central  Google Scholar 

  51. Voutsadakis IA (2021) Vitamin D baseline levels at diagnosis of breast cancer: A systematic review and meta-analysis. Hematol Oncol Stem Cell Ther 14(1):16–26

    Article  CAS  PubMed  Google Scholar 

  52. O’Brien KM et al (2018) Vitamin D, DNA methylation, and breast cancer. Breast Cancer Res 20(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  53. Simmons KM et al (2015) Gene signatures of 1,25-dihydroxyvitamin D3 exposure in normal and transformed mammary cells. J Cell Biochem 116(8):1693–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O’Brien KM et al (2022) Vitamin D supplement use and risk of breast cancer by race-ethnicity. Epidemiology 33(1):37–47

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sheng L, Callen DF, Turner AG (2018) Vitamin D(3) signaling and breast cancer: insights from transgenic mouse models. J Steroid Biochem Mol Biol 178:348–353

    Article  CAS  PubMed  Google Scholar 

  56. Bauer SR et al (2013) Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine 92(3):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewandowska A et al (2022) Risk factors for the diagnosis of colorectal cancer. Cancer Control 29:10732748211056692

    Article  PubMed  PubMed Central  Google Scholar 

  58. Klampfer L (2014) Vitamin D and colon cancer. World J Gastrointest Oncol 6(11):430–437

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferrer-Mayorga G et al (2019) Mechanisms of action of vitamin D in colon cancer. J Steroid Biochem Mol Biol 185:1–6

    Article  CAS  PubMed  Google Scholar 

  60. Khayami R et al (2022) Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 14(19):1213–1228

    Article  CAS  PubMed  Google Scholar 

  61. Huang CY et al (2022) Bioactive vitamin D attenuates MED28-mediated cell growth and epithelial-mesenchymal transition in human colorectal cancer cells. Biomed Res Int 2022:2268818

    Article  PubMed  PubMed Central  Google Scholar 

  62. Varghese JE (2020) Role of vitamin D3 on apoptosis and inflammatory-associated gene in colorectal cancer: an in vitro approach. J King Saud Univ Sci 32(6):2786–2789

    Article  Google Scholar 

  63. Lamprecht SA, Lipkin M (2003) Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3(8):601–614

    Article  CAS  PubMed  Google Scholar 

  64. Timar J, Ladanyi A (2022) Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci 23(10):5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Branisteanu DE et al (2023) Differences and similarities in epidemiology and risk factors for cutaneous and uveal melanoma. Medicina 59(5):943

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou M et al (2016) Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet 387(10015):251–272

    Article  PubMed  Google Scholar 

  67. Veierod MB et al (2010) Sun and solarium exposure and melanoma risk: effects of age, pigmentary characteristics, and nevi. Cancer Epidemiol Biomarkers Prev 19(1):111–120

    Article  PubMed  Google Scholar 

  68. Gajos-Michniewicz A, Czyz M (2020) WNT signaling in melanoma. Int J Mol Sci 21(14):4852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol 4(7):a007922

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chaiprasongsuk A et al (2019) Protective effects of novel derivatives of vitamin D(3) and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol 24:101206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liyanage UE et al (2020) Is there a causal relationship between vitamin D and melanoma risk? A Mendelian randomization study. Br J Dermatol 182(1):97–103

    Article  CAS  PubMed  Google Scholar 

  72. Millen AE et al (2004) Diet and melanoma in a case-control study. Cancer Epidemiol Biomark Prev 13(6):1042–1051

    Article  CAS  Google Scholar 

  73. van der Pols JC et al (2013) Vitamin D status and skin cancer risk independent of time outdoors: 11-year prospective study in an Australian community. J Investig Dermatol 133(3):637–641

    Article  PubMed  Google Scholar 

  74. Saiag P et al (2015) Prognostic value of 25-hydroxyvitamin D3 levels at diagnosis and during follow-up in melanoma patients. J Natl Cancer Inst 107(12):djv264

    Article  PubMed  Google Scholar 

  75. Muralidhar S et al (2019) Vitamin D-VDR signaling inhibits Wnt/β-catenin-mediated melanoma progression and promotes antitumor immunity. Cancer Res 79(23):5986–5998

    Article  CAS  PubMed  Google Scholar 

  76. Becker AL et al (2021) The role of the vitamin D receptor in the pathogenesis, prognosis, and treatment of cutaneous melanoma. Front Oncol 11:743667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang JY et al (2011) Calcium plus vitamin D supplementation and the risk of nonmelanoma and melanoma skin cancer: post hoc analyses of the women’s health initiative randomized controlled trial. J Clin Oncol 29(22):3078–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vasilovici AF et al (2019) Vitamin D receptor polymorphisms and melanoma. Oncol Lett 17(5):4162–4169

    CAS  PubMed  Google Scholar 

  79. Birke M et al (2020) Association of vitamin D receptor gene polymorphisms with melanoma risk: a meta-analysis and systematic review. Anticancer Res 40(2):583–595

    Article  CAS  PubMed  Google Scholar 

  80. Samant H, Amiri HS, Zibari GB (2021) Addressing the worldwide hepatocellular carcinoma: epidemiology, prevention and management. J Gastrointest Oncol 12(Suppl 2):S361–S373

    Article  PubMed  PubMed Central  Google Scholar 

  81. McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology 73(Suppl 1):4–13

    Article  CAS  PubMed  Google Scholar 

  82. Provvisiero DP et al (2019) Vitamin D reverts resistance to the mTOR inhibitor everolimus in hepatocellular carcinoma through the activation of a miR-375/oncogenes circuit. Sci Rep 9(1):11695

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang J et al (2016) 1,25(OH)2D3 inhibits the progression of hepatocellular carcinoma via downregulating HDAC2 and upregulating P21(WAFI/CIP1). Mol Med Rep 13(2):1373–1380

    Article  CAS  PubMed  Google Scholar 

  84. Hamilton JP et al (2014) Effects of vitamin D3 stimulation of thioredoxin-interacting protein in hepatocellular carcinoma. Hepatol Res 44(13):1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen J et al (2016) Vitamin D deficiency promotes liver tumor growth in transforming growth factor-beta/Smad3-deficient mice through Wnt and toll-like receptor 7 pathway modulation. Sci Rep 6:30217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilliland DG, Jordan CT, Felix CA (2004) The molecular basis of leukemia. Hematol Am Soc Hematol Educ Progr 2004(1):80–97

    Article  Google Scholar 

  87. Lee HJ et al (2014) Low 25(OH) vitamin D3 levels are associated with adverse outcome in newly diagnosed, intensively treated adult acute myeloid leukemia. Cancer 120(4):521–529

    Article  CAS  PubMed  Google Scholar 

  88. Jackmann N et al (2020) Vitamin D status in children with leukemia, its predictors, and association with outcome. Pediatr Blood Cancer 67(4):e28163

    Article  PubMed  Google Scholar 

  89. Wang J et al (2008) Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 283(37):25596–25605

    Article  CAS  PubMed  Google Scholar 

  90. Kricker A et al (2008) Personal sun exposure and risk of non Hodgkin lymphoma: a pooled analysis from the Interlymph Consortium. Int J Cancer 122(1):144–154

    Article  CAS  PubMed  Google Scholar 

  91. Shanafelt TD et al (2011) Vitamin D insufficiency and prognosis in chronic lymphocytic leukemia. Blood 117(5):1492–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gediz F et al (2020) A possible connection between circulating 25-hydroxy-vitamin D and molecular response in chronic myeloid leukemia. Bratisl Lek Listy 121(5):366–369

    CAS  PubMed  Google Scholar 

  93. Lokeshwar BL et al (1999) Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol Biomarkers Prev 8(3):241–248

    CAS  PubMed  Google Scholar 

  94. Chen Y et al (2013) Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein. J Biol Chem 288(27):19450–19458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kristal AR et al (2014) Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 23(8):1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang X et al (2019) Circulating vitamin D concentrations and risk of breast and prostate cancer: a Mendelian randomization study. Int J Epidemiol 48(5):1416–1424

    Article  PubMed  Google Scholar 

  97. Albanes D et al (2011) Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol Biomarkers Prev 20(9):1850–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Protiva P et al (2016) Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial. Am J Clin Nutr 103(5):1224–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Field S, Newton-Bishop JA (2011) Melanoma and vitamin D. Mol Oncol 5(2):197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LR Designed, Conceptualization, Writing—review and editing manuscript. PS, MB, FM, AF, and GB contributed to the literature collection, Writing the manuscript, and figure preparation. LR supervised the study. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Lotfollah Rezagholizadeh.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhi, P., Bahrami, M., Mahdizadeh, F. et al. Vitamin D and potential effects on cancers: a review. Mol Biol Rep 51, 190 (2024). https://doi.org/10.1007/s11033-023-09111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09111-y

Keywords

Navigation