Skip to main content
Log in

Molecular genetics, seed morphology and fatty acids diversity in castor (Ricinus communis L., Euphorbiaceae) Iranian populations

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Castor (Ricinus communis L.) seeds contain a large amount of oil that has several biological activities. In the current research, phytogeographic distribution, seed morphological characteristics, molecular genetic diversity and structure, and fatty acid composition were investigated in nine Iranian castor populations.

Methods and results

The cetyltrimethylammonium bromide (CTAB) protocol was used to extract the nuclear genomes. These were later amplified using 13 SCoT molecular primers. The phytogeographic distribution was determined based on the Zohary mapping, GC apparatus determined the fatty acid composition of the seeds. GenAlex, STRUCTURE, GenoDive, PopGene, and PopART software were used for the statistical analyzes. On phytogeographic mapping, the harvested populations belonged to different districts of the Euro-Siberian and Irano-Turanian regions (Holarctic kingdom). Most of the quantitative morphological traits of the seeds differed significantly (P ≤ 0.05) between the populations. The AMOVA test demonstrated a large proportion of significant genetic diversity assigned among populations, which were approved by some estimated parameters of genetic diversity such as Nm, Ht, Hs, and Gst. Nei’s genetic distance and structure analysis confirmed the existence of two main genotype groups and some intermediates. However, there was no isolation by distance between the genotypes. Unsaturated fatty acids were detected as the main component of seed oil with linoleic and ricinoleic acids. Significant correlations were detected between the main fatty acids of seed oil with seed morphological traits, geographic distance and the geographic parameters of habitats. According to the composition of the seed fatty acids, four chemotypes groups were detected.

Conclusions

The classification patterns of the populations based on molecular genetic data, fatty acid composition, and phytogeographic mapping were not identical. These findings indicated that Iranian castor populations had unusual seed fatty acid composition which strongly depended on habitat geographic factors and seed morphological traits. However, the identified chemotypes and genotypes can be used in future breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Landoni M, Bertagnon G, Ghidoli M, Cassani E, Adani F, Pilu R (2023) Opportunities and challenges of castor bean (Ricinus communis L.) genetic improvement. Agronomy 13:2076. https://doi.org/10.3390/agronomy13082076

    Article  CAS  Google Scholar 

  2. Anjani K (2014) A re-evaluation of castor (Ricinus communis L.) as a crop plant. Perspectives in agriculture, veterinary science. Nat Resour J 9(1):1–21. https://doi.org/10.1079/PAVSNNR20149038

    Article  Google Scholar 

  3. Sbihi HM, Nehdi IA, Mokbli S, Romdhani-Younes M, Al-Resayes SI (2018) Hexane and ethanol extracted seed oils and leaf essential compositions from two castor plant (Ricinus communis L.) varieties. Ind Crops Prod 122:174–181. https://doi.org/10.1016/jindcrop.201805.072

    Article  CAS  Google Scholar 

  4. Kallamadi PR, Nadigatla GR, Mulpuri S (2015) Molecular diversity in castor (Ricinus communis L.). Ind Crops Prod 66:271–281. https://doi.org/10.1016/j.indcrop.2014.12.061

    Article  CAS  Google Scholar 

  5. Yeboah A, Ying S, Lu J, Xie Y, Amoanimaa-Dede H, Boateng KGA, Chen M, Yin X (2021) Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Science and Technology. Food Sci Technol Campinas 41(Suppl 2):399–413. https://doi.org/10.1590/fst.19620

    Article  Google Scholar 

  6. Beruk AB, Abel WO, Assefa AT, Sintayehu SH (2018) Studies on Ethiopian castor seed (Ricinus communis L.): extraction and characterization of seed oil. J Nat Prod 4(2):188–190. https://doi.org/10.30799/jnpr.064.18040204

    Article  Google Scholar 

  7. Vasco JEA, Sabite P, Clavel E et al (2021) A simple method for extraction of Ricinus communis L. oil and its application for biodiesel production by ethylic route. Discov Sustain 2:7. https://doi.org/10.1007/s43621-021-00017-y

    Article  Google Scholar 

  8. Sedeek S, El-Ghobashy R, Tawfik M (2012) Thermal stability of cottonseed oil mixed with jojoba or castor oil during frying process. J Biol Chem Environ Sci 7(2):39–56

    Google Scholar 

  9. Said G, Daniel P, Badr K, Mohamed I, Zoubida C (2016) Chemical characterization and oxidative stability of castor oil grown in Morocco. Mor J Chem 4(2):279–284. https://doi.org/10.48317/IMIST.PRSM/morjchem-v4i2.4117

    Article  Google Scholar 

  10. Abdallah IB, Tlili N, Martinez-Force E, Rubio AGP, Perez Camino MC, Albouchi A, Boukhchina S (2015) Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem 173:972–978. https://doi.org/10.1016/j.foodchem.2014.10.095

    Article  CAS  PubMed  Google Scholar 

  11. Severino LS, Auld DL, Baldanzi M, Cândido MJ, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado OL (2012) A review on the challenges for increased production of castor. J Agron 104(4):853–880. https://doi.org/10.2134/agronj2011.0210

    Article  Google Scholar 

  12. de Andrade IRA, Cândido MJD, Franco Pompeu RCF, Feitosa TS, Bomfim MAD, Salles HO (2019) Inactivation of lectins from castor cake by alternative chemical compounds. Toxicon 160:47–54. https://doi.org/10.1016/j.toxicon.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Rocha AC, da Silveira Alves FG, Salles HO, Franco Pompeu RCF, Ludke JV, Severino LS, Cândido MJD (2022) The industrial process of solvent extraction of castor oil reduces the toxicity of the meal. Ind Crops Prod 181:114800–114809. https://doi.org/10.1016/j.indcrop.2022.1148

    Article  Google Scholar 

  14. Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93. https://doi.org/10.1007/s11105-008-0060-5

    Article  CAS  Google Scholar 

  15. Sujatha M, Muddanuru T, Francis G (2013) Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L. and development of a codominant SCAR marker. Plant Sci 207:117–127. https://doi.org/10.1016/j.plantsci.2013.02.013

    Article  CAS  Google Scholar 

  16. Xiong F, Zhong R, Han Z, Jiang J, He L, Zhuang W, Tang R (2011) Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep 38:3487–3494. https://doi.org/10.1007/s11033-010-0459-6

    Article  CAS  PubMed  Google Scholar 

  17. Guo DL, Zhang JY, Liu CH (2012) Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39:5307–5313. https://doi.org/10.1007/s11033-011-1329-6

    Article  CAS  PubMed  Google Scholar 

  18. Gorji AM, Poczai P, Polgar Z, Taller J (2011) Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res 88:226–237. https://doi.org/10.1007/s12230-011-9187-2

    Article  Google Scholar 

  19. Amirmoradi B, Talebi R, Karami E (2012) Comparative of genetic variation and differentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR and ISSR markers. Plant Syst Evol 298:1679–1688. https://doi.org/10.1007/s00606-012-0669-6

    Article  CAS  Google Scholar 

  20. Luo C, He XH, Chen H, Hu Y, Ou SJ (2012) Genetic relationship and diversity of Mangifera indica L. revealed through SCoT analysis. Genet Resour Crop Evol 59:1505–1515. https://doi.org/10.1007/s10722-011-9779-1

    Article  Google Scholar 

  21. Que Y, Pan Y, Lu Y, Yang C, Yang Y, Huang N, Xu L (2014) Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Res Intl 14:1–10. https://doi.org/10.1155/2014/468375

    Article  Google Scholar 

  22. Talebi SM, Mahdieh M, Sarveyas F, Matsyura A (2023) Infraspecific genetic diversity and seed fatty acid composition in Sesamum indicum L. populations (Pedaliaceae) in Iran. Biochem Syst Ecol 107:104618. https://doi.org/10.1016/j.bse.2023.104618

    Article  CAS  Google Scholar 

  23. Agyenim-Boateng KG, Lu J, Shi Y, Zhang D, Yin X (2019) SRAP analysis of the genetic diversity of wild castor (Ricinus communis L.) in South China. PLoS ONE 14(7):e0219667. https://doi.org/10.1371/journal.pone.0219667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Omohu OJ, Omale AC (2017) Physicochemical properties and fatty acid composition of castor bean Ricinus communis L. Seed Oil. Eur Biophys J 5(4):62–65. https://doi.org/10.11648/j.ejb.20170504.11

    Article  Google Scholar 

  25. Adebayo TB, Rofiat TA, Victoria TB (2013) Fatty acid composition and physicochemical properties of Castor (R. communis L.) seed obtained from Malete, Moro local Govt, Area Kwara state, Nigeria. Chem Mater 3(12):11–13

    Google Scholar 

  26. Nangbes JG, Nvau JB, Buba WM, Zukdimma AN (2013) Extraction and characterization of castor (Ricinus communis) seed oil. I J E S 2(9):105–109

    Google Scholar 

  27. Ramos LCD, Tango JS, Savi A, Leal NR (1984) Variability for oil and fatty acid composition in castor bean varieties. J Am Oil Chem Soc 61:1841–1843

    Article  CAS  Google Scholar 

  28. Conceicao MM, Candeia RA, Silver FC, Bezerra AF, Fernandes VJ, Souza AG (2007) Thermochemical characterization of castor oil biodiesel. Renew Sustain Energy Rev 11(5):964–975. https://doi.org/10.1016/j.rser.2005.10.001

    Article  CAS  Google Scholar 

  29. Guerrero Fajardo CA, Osorio León ID, Sierra Vargas FE (2010) Evaluating the effect of temperature on biodiesel production from castor oil. Ingen Investig 30(2):52–61. https://doi.org/10.15446/ing.investig.v30n2.15733

    Article  Google Scholar 

  30. Osorio-González CS, Gómez-Falcon N, Sandoval-Salas F, Saini R, Brar SK, Avalos Ramírez A (2020) Production of biodiesel from castor oil: a review. Energies 13:2467. https://doi.org/10.3390/en13102467

    Article  CAS  Google Scholar 

  31. Jan AH, Šurina I, Zaman A, Al-Fatesh AS, Rahim F, Al-Otaibi RL (2022) Synthesis of biodiesel from Ricinus communis L. seed oil, a promising non-edible feedstock using calcium oxide nanoparticles as a catalyst. Energies 15:6425. https://doi.org/10.3390/en15176425

    Article  CAS  Google Scholar 

  32. Ergun Z, Zarıfıkhosroshahı M (2022) The effect of different climatic zones on fatty acid profile of Ricinus communis seed oil. Int J Agric Environ food Sci 6(2):263–270. https://doi.org/10.31015/jaefs.2022.2.9

    Article  Google Scholar 

  33. Goodarzi F, Darvishzadeh R, Hassani A (2015) Genetic analysis of castor (Ricinus communis L.) using ISSR markers. J. Plant Mol Breed 3(1):18–34

    Google Scholar 

  34. Chakrabarty S, Kalam A, Islam MA, Yaakob Z (2021) Castor (Ricinus communis): an underutilized oil crop in the South East Asia. In: Larramendy ML, Soloneski S (eds) Agroecosystems – very complex environmental systems. Intech Open, London

    Google Scholar 

  35. Zohary M (1973) Geobotanical Foundations of the Middle East, vol 2. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  36. de Jesús Peña-Uribe G, Valdivia-Martínez O, López-Santos A, Valdez-Cepeda RD (2021) Morphometry of castor bean seeds from the Durango State’s arid zone Mexico. Seed Sci Technol 49(3):247–260. https://doi.org/10.15258/sst.2021.49.3.06\

    Article  Google Scholar 

  37. Talebi SM, Askary M, Samiei-Rad M, Tabaripour R, Matsyura A (2022) Do we have infraspecific taxa of Salvia macrosiphon Boiss. (Lamiaceae) in Iran? Mol Biol Rep 49:1181–1189. https://doi.org/10.1007/s11033-021-06946-1

    Article  CAS  PubMed  Google Scholar 

  38. Vivodík M, Saadaoui E, Balážová Ž, Gálová Z, Petrovičová L (2018) Genetic diversity and population structure in Tunisian castor genotypes (Ricinus communis L.) detected using scot markers. Potr S J F Sci 12:143–149. https://doi.org/10.5219/873

    Article  Google Scholar 

  39. Peakall R, Smouse PE (2012) GENALEX 6.5: genetic analysis in Excel, population genetic software for teaching and research. An update. Bioinformatics 28(19):2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yeh FC, Yang RC, Boyle T (1999) POPGENE Version 1.32: Microsoft Window-Based Freeware for Population Genetics Analysis. University of Alberta, Edmonton

    Google Scholar 

  41. Meirmans PG (2012) AMOVA–based clustering of population genetic data. J Hered 103(5):744–750. https://doi.org/10.1093/jhered/ess047

    Article  PubMed  Google Scholar 

  42. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  43. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  44. Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  45. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  46. Borcard D, Legendre P (2012) Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93(6):1473–1481. https://doi.org/10.1890/11-1737.1

    Article  PubMed  Google Scholar 

  47. Warra AA, Wawata IG, Umar RA, Gunu (2013) Extraction of oil from castor beans using n-hexane: chemical analysis and transparent soap preparation. World Res J Chem 1:039–041

    Google Scholar 

  48. Ichihara KI, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography [S]. J L R 51(3):635–640. https://doi.org/10.1194/jlr.D001065

    Article  CAS  Google Scholar 

  49. Silva ARS, Silva SA, Santos LA, dos Souza DR, de Araujo G, de Dantas JLL, Leite E (2019) Characterization and performance of castor bean lineages and parents at the UFRB germplasm bank. PLoS ONE 14(1):1–15. https://doi.org/10.1371/journalpone.0209335

    Article  Google Scholar 

  50. Moosavi SA, Siadat SA, Khuchekzade A, Parmoon GH, Kiani S (2022) Effect of seed color and size on cardinal temperatures of castor bean (Ricinus communis L.) seed germination. Agrotech Ind Crops 2(1):1–10. https://doi.org/10.22126/atic.2022.7417.1041

    Article  Google Scholar 

  51. Qi W, Li J, Chen W, Rong L, Changli L (2020) Analysis of seed char-acters and plant growth of Bupleurum chinense from different geographical provenances. China Agri Sci Technol Guide 22(4):68–77

    CAS  Google Scholar 

  52. Liu J, Chen M, Zhang Y, Zheng B (2022) Analyses of the oil content, fatty acid composition, and antioxidant activity in seeds of Thlaspi arvense L. from different provenances and correlations with environmental factors. Chem Biol Technol Agric 9:11. https://doi.org/10.1186/s40538-021-00276-x

    Article  CAS  Google Scholar 

  53. Li FJ, Wang CL, Wang CF, Chen ZQ, Chen MH, Gao LF (2008) Fatty acid composition of the castor bean seed of nine castor bean hybrids. China Oils Fats 33:62–64

    CAS  Google Scholar 

  54. Wang M, Morris J, Pinnow D, Davis J, Raymer P, Pederson G (2010) A survey of the castor oil content, seed weight and seed-coat colour on the United States department of agriculture germplasm collection. Plant Genet Resour 8(3):229–231. https://doi.org/10.1017/S1479262110000262

    Article  Google Scholar 

  55. Udoh OE, Abu NE, Ugwueze C, Ebeifenadi UC (2016) Variations in seed traits of castor (Ricinus communis) accessions collected from Enugu state. Nigeria Agro-Science 15(1):6–10. https://doi.org/10.4314/as.v15i1.2

    Article  Google Scholar 

  56. Salihu BZ, Gbadeyan ST, Nwosu JD, Bernard E (2018) Estimation of genetic variability, correlations and path coefficients for seed yield contributors in castor (Ricinus communis L.). Iran J Genet Plant Breed 7(2):24–32. https://doi.org/10.30479/ijgpb.2019.10098.1227

    Article  Google Scholar 

  57. De Oliveira Neto SS, de Paula Manjavachi MK, Zeffa DM, Pereira Sartori MM, Zanotto MD (2019) Morphological characterization and selection of castor bean accessions for mechanized production. Pesq Agropec Trop Goiânia 49:e56749. https://doi.org/10.1590/1983-40632019v4956749

    Article  Google Scholar 

  58. Kim H, Lei P, Wang A, Liu S, Zhaoy Huang F, Yu Z, Zhu G, He Z, Tan D, Wang H (2021) Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy 11:457. https://doi.org/10.3390/agronomy11030457

    Article  CAS  Google Scholar 

  59. Gajera BB, Kumar N, Singh AS, Punvar BS, Ravikiran R, Subhash N, Jadeja GC (2010) Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind Crop Prod 32:491–498. https://doi.org/10.1016/j.indcrop.2010.06.021

    Article  CAS  Google Scholar 

  60. Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-Berhan A, Huot- Creasy H, Puiu D, Rosovitz MJ, Khouri HM, Beckstrom-Sternberg SM, Allan GJ, Keim P, Ravel J, Rabinowicz PD (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS ONE 6:1–9. https://doi.org/10.1371/journal.pone.0021743

    Article  CAS  Google Scholar 

  61. Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single 453 nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). 454 BMC Plant Biol 10:1–11. https://doi.org/10.1186/1471-2229-10-13

  62. Allan G, Williams A, Rabinowicz P, Chan A, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378. https://doi.org/10.1007/s10722-007-9244-3

    Article  CAS  Google Scholar 

  63. Qiu L, Yang C, Tian B, Yang JB, Liu A (2010) Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol 10:1–11. https://doi.org/10.1186/1471-2229-10-278

    Article  CAS  Google Scholar 

  64. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotech Adv 26:424–435. https://doi.org/10.1007/s11033-021-06946-1

    Article  CAS  Google Scholar 

  65. Wang C, Li GR, Zhang ZY, Peng M, Yu SI, Luo R, Chen YS (2013) Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochem Syst Ecol 51:301–307. https://doi.org/10.1016/j.bse.2013.09.017

    Article  CAS  Google Scholar 

  66. Ferfuia C, Turi M, Vannozzi GP (2015) Variability of seed fatty acid composition to growing degree-days in high oleic acid sunflower genotypes. Helia 38:61–78. https://doi.org/10.1515/HELIA-2014-0022

    Article  Google Scholar 

  67. Grunvald AK, de Carvalho CGP, Leite RS, Mandarino JMG, de Bastos Andrade CA, Amabile RF, de Paulo Campos Godinho V (2013) Influence of temperature on the fatty acid composition of the oil from sunflower genotypes grown in tropical regions. J Am Oil Chem Soc 90:545–553. https://doi.org/10.1007/s11746-012-2188-6

    Article  CAS  Google Scholar 

  68. Izquierdo NG, Aguirreza ́bal LAN (2008) Genetic variability in response of fatty acid composition to minimum night temperature during grain filling in sunflower. Field Crops Res 106:116–125. https://doi.org/10.1016/j.fcr.2007.10.016

    Article  Google Scholar 

  69. Nissim Y, Shloberg M, Biton I, Many Y, Doron-Faigenboim A, Zemach H, Hovav R, Kerem Z, Avidan B, Ben-Ari G (2020) High temperature environment reduces olive oil yield and quality. PLoS ONE 15:e0231956. https://doi.org/10.1371/journal.pone.0231956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hemingway J, Eskandari M, Rajcan I (2015) Genetic and environmental effects on fatty acid composition in soybeans with potential use in the automotive industry. Crop Sci 55:658–668. https://doi.org/10.2135/cropsci2014.06.0425

    Article  CAS  Google Scholar 

  71. Zali H, Hasanloo T, Sofalian O, Asghari A (2020) Evaluation of drought stress effect on seed oil yield and fatty acid composition in canola (Brassica napus L.) cultivars. ESCS 13(3):735–747. https://doi.org/10.22077/escs.2020.2205.1552

  72. Ghidoli M, Frazzini, S, De Benedetti S, Sangiorgio S, Landoni M, Scarafoni A, Rossi L, Pilu R (2023) Genetic improvement of Camelina sativa (L.) Crantz: opportunities and challenges. Agronomy 12: 1562. https://doi.org/10.3390/agronomy13061562

  73. Kouakou YYFR, Kra KD, Diallo HA (2023) Effects of two-dried castor leaf formulations on the population dynamics and pathological activities of root-lesion and root-knot nematodes on water yam. Int J Plant Soil Sci 35:33–41. https://doi.org/10.9734/ijpss/2023/v35i143018

    Article  CAS  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

SMT, MM and TG contributed in the preparation of the material and collection of data. RT performed the molecular analyzes. The first draft of the manuscript was written by SMT and revised by AM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seyed Mehdi Talebi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

Not applicable.

Consent for publication

We hereby declare that we participated in this research and in the development of this paper. We have read its final version and give our consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdieh, M., Talebi, S.M., Dehghan, T. et al. Molecular genetics, seed morphology and fatty acids diversity in castor (Ricinus communis L., Euphorbiaceae) Iranian populations. Mol Biol Rep 50, 9859–9873 (2023). https://doi.org/10.1007/s11033-023-08904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08904-5

Keywords

Navigation