Skip to main content

Advertisement

Log in

In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Single-target inhibitors have not been successful in cancer treatment due to the development of drug resistance. Nevertheless, therapeutic agents capable of simultaneously inhibiting multiple targets have revealed encouraging results in inducing apoptosis and overcoming drug resistance in cancerous cells. Here, we designed a composite liposomal nano-carrier co-loading 5-Fluorouracil (5-FU) with all-trans retinoic acid (ATRA) to assess anticancer efficacy of the combined drugs in colorectal cancer (CRC).

Methods

A PEGylated liposomal nano-carrier with phospholipid/cholesterol/DSPE-PEG (2000) was synthesized by the thin film hydration technique for co-delivery of ATRA and 5-FU. After characterizing, the role of 5-FU and ATRA co-loaded liposomal nano-carrier in proliferation, epithelial-mesenchymal transition (EMT), apoptosis, and cancer stem cells (CSCs) were investigated by using colony forming and MTT assay, RT-qPCR and Annexin V/PI kit.

Results

The average size of liposomes (LPs) was < 150 nm with uniform size distribution. Drug release analyses indicated that both ATRA and 5-FU could simultaneously release from LPs in a sustained release manner. The synergistic inhibitory effects of ATRA and 5-FU loaded in LPs were verified with a combination index of 0.43. Dual drug LPs showed the highest cytotoxicity, enhanced inhibition of cell proliferation, increased apoptotic potential, decreased CSCs, and attenuated EMT-associated biomarkers. Also, dual drug LPs decreased β-catenin gene expression more than other liposomal formulations.

Conclusion

These findings suggest that using LPs to achieve a synergistic effect of ATRA and 5-FU is an effectual approach to increase the therapeutic effect of 5-FU toward CRC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wang S, Gou J, Wang Y, Tan X, Zhao L, Jin X et al (2021) Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomed 16:2357

    Article  Google Scholar 

  2. Phi LTH, Sari IN, Yang Y-G, Lee S-H, Jun N, Kim KS et al (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018:1–16

    Article  Google Scholar 

  3. Sharma V, Gupta SK, Verma M (2019) Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs. Cancer Chemother Pharmacol 84(6):1157–1166

    Article  CAS  PubMed  Google Scholar 

  4. Sethy C, Kundu CN (2021) 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother 137:111285

    Article  CAS  PubMed  Google Scholar 

  5. Barbato L, Bocchetti M, Di Biase A, Regad T (2019) Cancer stem cells and targeting strategies. Cells 8(8):926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan Y, Ma S, Cao K, Zhou S, Zhao A, Li M et al (2018) Therapeutic approaches targeting cancer stem cells. J Cancer Res Ther 14(7):1469–1475

    Article  CAS  PubMed  Google Scholar 

  7. Liang C, Qiao G, Liu Y, Tian L, Hui N, Li J et al (2021) Overview of all-trans-retinoic acid (ATRA) and its analogues: structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur J Med Chem 220:113451

    Article  CAS  PubMed  Google Scholar 

  8. Li C, Han X (2020) Co-delivery of dacarbazine and all-trans retinoic acid (ATRA) using lipid nanoformulations for synergistic antitumor efficacy against malignant melanoma. Nanoscale Res Lett 15:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei M, Ma G, Sha S, Wang X, Feng H, Zhu Y et al (2019) Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Delivery 26(1):262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kong L, Cai FY, Yao XM, Jing M, Fu M, Liu JJ et al (2020) RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci 111(2):621–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pal K, Madamsetty VS, Dutta SK, Mukhopadhyay D (2019) Co-delivery of everolimus and vinorelbine via a tumor-targeted liposomal formulation inhibits tumor growth and metastasis in RCC. Int J Nanomed 14:5109–5123

    Article  CAS  Google Scholar 

  12. Wang S, Gou J, Wang Y, Tan X, Zhao L, Jin X et al (2021) Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomed 16:2357–2372

    Article  Google Scholar 

  13. Wang X, Liu Y, Xu W, Jia L, Chi D, Yu J et al (2021) Irinotecan and berberine co-delivery liposomes showed improved efficacy and reduced intestinal toxicity compared with onivyde for pancreatic cancer. Drug Delivery Transl Res 11:1–12

    Google Scholar 

  14. Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S (2020) Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and chrysin. J Biomater Sci Polym Ed 31(9):1107–1126

    Article  CAS  PubMed  Google Scholar 

  15. Sercombe L, Veerati T, Moheimani F, Wu S, Sood A, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6(2015):286

    PubMed  PubMed Central  Google Scholar 

  16. Tanzadehpanah H, Mahaki H, Manoochehri H, Soleimani M, Najafi R (2022) AS1411 aptamer improves therapeutic efficacy of PEGylated nanoliposomes loaded with gefitinib in the mice bearing CT26 colon carcinoma. J Nanopart Res 24(12):1–18

    Article  Google Scholar 

  17. Jain A, Jain S (2018) Advances in tumor targeted liposomes. Curr Mol Med 18(1):44–57

    Article  CAS  PubMed  Google Scholar 

  18. Deshpande P, Biswas S, Torchilin V (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8:1509–1528

    Article  CAS  PubMed  Google Scholar 

  19. Lee W, Im H-J (2019) Theranostics based on liposome: looking back and forward. Nucl Med Mol Imaging 53(4):242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Najafi R (2022) Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B 218:112714

    Article  CAS  Google Scholar 

  21. Pietzyk B, Henschke K (2000) Degradation of phosphatidylcholine in liposomes containing carboplatin in dependence on composition and storage conditions. Int J Pharm 196(2):215–218

    Article  CAS  PubMed  Google Scholar 

  22. Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Article  CAS  PubMed  Google Scholar 

  23. Gupta P, Mazumder R, Padhi S (2020) Glycerosomes: advanced liposomal drug delivery system. Indian J Pharm Sci. https://doi.org/10.36468/pharmaceutical-sciences.661

    Article  Google Scholar 

  24. Anderson M, Omri A (2004) The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Delivery 11(1):33–39

    Article  CAS  PubMed  Google Scholar 

  25. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 12(2):265–273

    Google Scholar 

  26. Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA (2017) Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discovery Today 22(2):270–281

    Article  CAS  PubMed  Google Scholar 

  27. Sen K, Banerjee S, Mandal M (2019) Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B 180:9–22

    Article  CAS  Google Scholar 

  28. Udofot O, Affram K, Agyare E (2015) Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines. Integr Cancer Sci Ther 2(5):245

    PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Lin Z, Chen Y, Gao D, Wang P, Lin Y et al (2022) Co-delivery of docetaxel and resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. Eur J Pharm Sci 174:106199

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Han X (2020) Co-delivery of dacarbazine and all-trans retinoic acid (ATRA) using lipid nanoformulations for synergistic antitumor efficacy against malignant melanoma. Nanoscale Res Lett 15(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen T, Chen H, Jiang Y, Yan Q, Zheng S, Wu M (2022) Co-delivery of 5-fluorouracil and paclitaxel in mitochondria-targeted KLA-modified liposomes to improve triple-negative breast cancer treatment. Pharmaceuticals 15(7):881

    Article  PubMed  PubMed Central  Google Scholar 

  32. Salatin S, Yari KA (2017) Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 21(9):1668–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Udofot O, Affram K, Smith T, Tshabe B, Krishnan S, Sachdeva M et al (2016) Pharmacokinetic, biodistribution and therapeutic efficacy of 5-fluorouracil-loaded pH-sensitive PEGylated liposomal nanoparticles in HCT-116 tumor bearing mouse. J Nat Sci. https://doi.org/10.15761/ICST.1000150

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grace VMB, Wilson DD, Guruvayoorappan C, Danisha JP, Bonati L (2021) Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells. IET Nanobiotechnol 15(4):380–390

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dhanavel S, Praveena P, Narayanan V, Stephen A (2020) Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym Bull 77:5681–5696

    Article  CAS  Google Scholar 

  36. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinberg R, Hanahan D (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  Google Scholar 

  38. Sporn MB (1976) Approaches to prevention of epithelial cancer during the preneoplastic period. AACR

  39. Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y et al (2017) Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci 105:219–229

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Liu Y, Kim YJ, Mac J, Zhuang R, Wang P (2017) Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Adv 7(32):19685–19693

    Article  CAS  PubMed  Google Scholar 

  41. Zhang B, Wang T, Yang S, Xiao Y, Song Y, Zhang N et al (2016) Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 238:10–21

    Article  CAS  PubMed  Google Scholar 

  42. Lian B, Wei H, Pan R, Sun J, Zhang B, Wu J et al (2021) Galactose modified liposomes for effective co-delivery of doxorubicin and combretastatin A4. Int J Nanomed 16:457–67

    Article  Google Scholar 

  43. Kang X-j, Wang H-y, Peng H-g, Chen B-f, Zhang W-y, Wu A-h et al (2017) Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin 38(6):885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Du Y, He W, Zhou W, Xia Q, Li X (2019) Doxorubicin-loaded all-trans retinoic acid dimer phospholipid liposomes as co-delivery system to reverse drug resistance in breast cancer. Nanosci Nanotechnol Lett 11(6):749–759

    Article  Google Scholar 

  45. Ruttala HB, Ko YT (2015) Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf B 128:419–426

    Article  CAS  Google Scholar 

  46. Liu Q, Luo L, Gao X, Zhang D, Feng X, Yang P et al (2023) Co-Delivery of daunorubicin and homoharringtonine in folic acid modified-liposomes for enhancing therapeutic effect on acute myeloid leukemia. J Pharm Sci 112(1):123–131

    Article  CAS  PubMed  Google Scholar 

  47. Farahmand L, Darvishi B, Salehi M, Samadi Kouchaksaraei S, Majidzadeh-A K (2018) Functionalised nanomaterials for eradication of CSCs, a promising approach for overcoming tumour heterogeneity. J Drug Target 26(8):649–657

    Article  CAS  PubMed  Google Scholar 

  48. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T (2018) Cancer stem cells in colorectal cancer: a review. J Clin Pathol 71(2):110–116

    Article  CAS  PubMed  Google Scholar 

  49. Perona R, López-Ayllón BD, de Castro CJ, Belda-Iniesta C (2011) A role for cancer stem cells in drug resistance and metastasis in non-small-cell lung cancer. Clin Transl Oncol 13(5):289–293

    Article  CAS  PubMed  Google Scholar 

  50. Soltanian S, Matin MM (2011) Cancer stem cells and cancer therapy. Tumor Biol 32(3):425–440

    Article  Google Scholar 

  51. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  52. Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162

    Article  CAS  PubMed  Google Scholar 

  53. Zeuner A, Todaro M, Stassi G, De Maria R (2014) Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15(6):692–705

    Article  CAS  PubMed  Google Scholar 

  54. Sengupta A, Cancelas JA (2010) Cancer stem cells: a stride towards cancer cure? J Cell Physiol 225(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kozovska Z, Gabrisova V, Kucerova L (2014) Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 68(8):911–916

    Article  CAS  PubMed  Google Scholar 

  56. Vedeld HM, Skotheim RI, Lothe RA, Lind GE (2014) The recently suggested intestinal cancer stem cell marker DCLK1 is an epigenetic biomarker for colorectal cancer. Epigenetics 9(3):346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang Q, Zhang T, Wang C, Jiao J, Li J, Deng Y (2014) Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells. Eur J Pharm Biopharm 88(3):737–745

    Article  CAS  PubMed  Google Scholar 

  58. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nature Publishing Group

    Book  Google Scholar 

  59. Weidenfeld K, Barkan D (2018) EMT and stemness in tumor dormancy and outgrowth: are they intertwined processes? Front Oncol 8:381

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qi C, Wang D, Gong X, Zhou Q, Yue X, Li C et al (2021) Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of aHSC-induced drug resistance and metastasis. ACS Appl Mater Interfaces 13(14):16019–16035

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q et al (2018) Cancer stem cells in progression of colorectal cancer. Oncotarget 9(70):33403

    Article  PubMed  Google Scholar 

  62. Chen Y-Q, Zhu W-T, Lin C-Y, Yuan Z-W, Li Z-H, Yan P-K (2021) Delivery of rapamycin by liposomes synergistically enhances the chemotherapy effect of 5-fluorouracil on colorectal cancer. Int J Nanomed 16:269–281

    Article  Google Scholar 

Download references

Funding

This study was supported by the Hamadan University of Medical Sciences (9904172448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezvan Najafi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was confirmed by the Hamadan University of Medical Sciences ethics committee (IR.UMSHA.REC.1399.266).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarifar, Z., Amini, R., Tanzadehpanah, H. et al. In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment. Mol Biol Rep 50, 10047–10059 (2023). https://doi.org/10.1007/s11033-023-08888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08888-2

Keywords

Navigation