Skip to main content
Log in

Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Apoptotic agents from natural products like phenolic compounds can be used effectively in the treatment of cancer. Chlorogenic acid (CGA) is one of the phenolic compounds in medicinal plants with anti-cancer properties. In this research, we aimed to explore the anti-cancer mode of action of CGA on colorectal cancer (CRC) cells in vitro conditions.

Methods

HT-29 and HEK-293 cells were cultured after MTT assay for 24 h with CGA 100 µM, and without CGA. Then, flow cytometry assays and the expression of apoptosis-related genes including caspase 3 and 9, Bcl-2 and Bax, and cell cycle-related genes including P21, P53 and NF-κB at mRNA and protein levels were examined. Finally, we measured the amount of intracellular reactive oxygen species (ROS).

Results

The cell viability of all two-cell lines decreased in a dose-dependent manner. Moreover, CGA induces cell cycle arrest in HT-29 cells by increasing the expression of P21 and P53. It also induces apoptosis in HT-29 cells by mitigating Bcl-2 and NF-κB expression and elevating caspase 3 and 9 expression and ROS levels.

Conclusions

Considering the cytotoxicity and cell cycle arrest and induction of apoptosis in the colon cancer cell line by CGA, it can be concluded that CGA is a suitable option for the treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Abbreviations

CGA:

Chlorogenic acid

HT-29:

Human colorectal adenocarcinoma cell line (ATCC HTB-38)

HEK-293:

Human embryo kidney (IBRC C10139)

ROS:

Reactive oxygen species

Bcl-2:

B-cell lymphoma 2

Bax:

BCL2 associated X

PI:

Propidium iodide

MTT:

2,5-Diphenyl-2H-tetrazolium bromide

BrdU:

Bromodeoxyuridine / 5-bromo-2'-deoxyuridine

NF-κB:

Nuclear factor kappa B

GC–MS:

GC mass spectrometry

References

  1. Ranjbary AG, Mehrzad J, Dehghani H, Abdollahi A, Hosseinkhani S (2020) Variation in blood and colorectal epithelia’s key trace elements along with expression of mismatch repair proteins from localized and metastatic colorectal cancer patients. Biol Trace Elem Res 194(1):66–75

    Article  PubMed  Google Scholar 

  2. Ghorbani Ranjbary A, Mehrzad J, Rahbar N, Dehghani H (2023) Impacts of some clinicopathodemography and colorectal tissues key cell cycle and mucin stabilizing molecules on the metastasis trend in colorectal cancer patients. Mol Biol Rep. https://doi.org/10.1007/s11033-023-08766-x

    Article  PubMed  Google Scholar 

  3. Azimi M, Mehrzad J, Ahmadi A, Ahmadi E, Ghorbani RA (2021) Apoptosis induced by Ziziphora tenuior essential oil in human colorectal cancer cells. Biomed Res Int 2021:5522964

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Zain RB (2016) Cell cycle arrest and mechanism of apoptosis induction in H400 oral cancer cells in response to Damnacanthal and Nordamnacanthal isolated from Morinda citrifolia. Cytotechnology. https://doi.org/10.1007/s10616-016-0014-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25(1):104–113

    Article  CAS  PubMed  Google Scholar 

  7. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Cell Cycle Control: Mech Protoc. https://doi.org/10.1007/978-1-4939-0888-2_2

    Article  Google Scholar 

  8. Vermeulen K, Berneman ZN, Van Bockstaele DR (2003) Cell cycle and apoptosis. Cell Prolif 36(3):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ranjbary AG, Saleh GK, Azimi M, Karimian F, Mehrzad J, Zohdi J (2023) Superparamagnetic iron oxide nanoparticles induce apoptosis in HT-29 cells by stimulating oxidative stress and damaging DNA. Biol Trace Elem Res 201(3):1163–1173

    Article  CAS  PubMed  Google Scholar 

  10. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6(3):a026104

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149(6):1269–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Büki A, Okonkwo DO, Wang KK, Povlishock JT (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20(8):2825–2834

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen Q, Gong B, Almasan A (2000) Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 7(2):227–233

    Article  CAS  PubMed  Google Scholar 

  14. Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30(5):609–627

    Article  CAS  PubMed  Google Scholar 

  15. Vaux DL (2011) Apoptogenic factors released from mitochondria. Biochim Biophys Acta (BBA)—Mol Cell Res 1813(4):546–550

    Article  CAS  Google Scholar 

  16. Singh SK, Banerjee S, Acosta EP, Lillard JW, Singh R (2017) Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 8(10):17216

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kubczak M, Khassenova AB, Skalski B, Michlewska S, Wielanek M, Skłodowska M, Aralbayeva AN, Nabiyeva ZS, Murzakhmetova MK, Zamaraeva M, Bryszewska M, Ionov M (2022) Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Sci Rep 12(1):1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang N, Kitts DD (2015) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nabavi SF, Tejada S, Setzer WN, Gortzi O, Sureda A, Braidy N, Daglia M, Manayi A, Nabavi SM (2017) Chlorogenic acid and mental diseases: from chemistry to medicine. Curr Neuropharmacol 15(4):471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C (2022) The biological activity mechanism of chlorogenic acid and its applications in food industry: a review. Front Nutr 9:943911

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang JS, Liu CW, Ma YS, Weng SW, Tang NY, Wu SH, Ji BC, Ma CY, Ko YC, Funayama S, Kuo CL (2012) Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase-and mitochondria-dependent pathways. In Vivo 26(6):971–978

    CAS  PubMed  Google Scholar 

  23. Huang MT, Badmaev V, Ding Y, Liu Y, Xie JG, Ho CT (2000) Anti-tumor and anti-carcinogenic activities of triterpenoid, β-boswellic acid. BioFactors 13(1–4):225–230

    Article  CAS  PubMed  Google Scholar 

  24. Sakagami H, Jiang Y, Kusama K, Atsumi T, Ueha T, Toguchi M, Iwakura I, Satoh K, Fukai T, Nomura T (2000) Induction of apoptosis by flavones, flavonols (3-hydroxyflavones) and isoprenoid-substituted flavonoids in human oral tumor cell lines. Anticancer Res 20(1A):271–277

    CAS  PubMed  Google Scholar 

  25. Bhattacharya S, Zheng H, Tzimas C, Carroll M, Baker DP, Fuchs SY (2011) Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNα via accelerating the degradation of its receptor. Blood, J Am Soc Hematol 118(15):4179–4187

    CAS  Google Scholar 

  26. Rakshit S, Mandal L, Pal BC, Bagchi J, Biswas N, Chaudhuri J, Chowdhury AA, Manna A, Chaudhuri U, Konar A, Mukherjee T (2010) Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl+ CML cells. Biochem Pharmacol 80(11):1662–1675

    Article  CAS  PubMed  Google Scholar 

  27. Ge F, Ke C, Tang W, Yang X, Tang C, Qin G, Xu R, Li T, Chen X, Zuo J, Ye Y (2007) Isolation of chlorogenic acids and their derivatives from Stemona japonica by preparative HPLC and evaluation of their anti-AIV (H5N1) activity in vitro. Phytochem Anal 18(3):213–218

    Article  CAS  PubMed  Google Scholar 

  28. Vinson JA, Chen X, Garver DD (2019) Determination of total chlorogenic acids in commercial green coffee extracts. J Med Food 22(3):314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L (2021) Chlorogenic acid enhances doxorubicin-mediated cytotoxic effect in osteosarcoma cells. Int J Mol Sci 22(16):8586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du J, Chen C, Sun Y, Zheng L, Wang W (2015) Ponicidin suppresses HT29 cell growth via the induction of G1 cell cycle arrest and apoptosis. Mol Med Rep 12(4):5816–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phang CW, Karsani SA, Abd Malek SN (2017) Induction of apoptosis and cell cycle arrest by flavokawain C on HT-29 human colon adenocarcinoma via enhancement of reactive oxygen species generation, upregulation of p21, p27, and Gadd153, and inactivation of inhibitor of apoptosis proteins. Pharmacogn Mag 13(Suppl 2):S321

    PubMed  PubMed Central  Google Scholar 

  32. Karimi A, Krähmer A, Herwig N, Schulz H, Hadian J, Meiners T (2020) variation of secondary metabolite profile of Zataria multiflora Boiss. populations linked to geographic, climatic, and edaphic factors. Front Plant Sci 11:969

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F (2010) Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol 48(6):1562–1567

    Article  CAS  PubMed  Google Scholar 

  34. Saharkhiz MJ, Smaeili S, Merikhi M (2010) Essential oil analysis and phytotoxic activity of two ecotypes of Zataria multiflora Boiss. growing in Iran. Nat Prod Res 24(17):1598–1609

    Article  CAS  PubMed  Google Scholar 

  35. Zeng A, Liang X, Zhu S, Liu C, Wang S, Zhang Q, Zhao J, Song L (2021) Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol Rep 45(2):717–727

    Article  CAS  PubMed  Google Scholar 

  36. Sakai E, Farhana F, Yamaguchi Y, Tsukuba T (2022) Potentials of natural antioxidants from plants as antiosteoporotic agents. Stud Nat Prod Chem 72:1–28

    Article  CAS  Google Scholar 

  37. Liu YJ, Zhou CY, Qiu CH, Lu XM, Wang YT (2013) Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells. Mol Med Rep 8(4):1106–1110

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Du H, Chen P (2020) Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother 131:110673

    Article  CAS  PubMed  Google Scholar 

  39. Shi X, Zhou N, Cheng J, Shi X, Huang H, Zhou M, Zhu H (2019) Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol Toxicol 20:1

    Article  Google Scholar 

  40. Antonsson B (2001) Bax and other pro-apoptotic Bcl-2 family” killer-proteins” and their victim the mitochondrion. Cell Tissue Res 306:347–361

    Article  CAS  PubMed  Google Scholar 

  41. Kapoor I, Bodo J, Hill BT, Hsi ED, Almasan A (2020) Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 11(11):941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:1–9

    Article  Google Scholar 

  43. Li Y, Pu R, Zhou L, Wang D, Li X (2021) Effects of a chlorogenic acid-containing herbal medicine (LASNB) on colon cancer. Evid Based Complement Alternat Med 2021(20):9923467

    PubMed  PubMed Central  Google Scholar 

  44. Vélez-Vargas LC, Santa-González GA, Uribe D, Henao-Castañeda IC, Pedroza-Díaz J (2023) In Vitro and In silico study on the impact of chlorogenic acid in colorectal cancer cells: proliferation, apoptosis, and interaction with β-catenin and LRP6. Pharmaceuticals (Basel) 16(2):276

    Article  PubMed  Google Scholar 

  45. Cheng X, Xu X, Chen D, Zhao F, Wang W (2019) Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 110:473–481

    Article  CAS  PubMed  Google Scholar 

  46. Disoma C, Zhou Y, Li S, Peng J, Xia Z (2022) Wnt/β-catenin signaling in colorectal cancer: is therapeutic targeting even possible? Biochimie 195:39–53

    Article  CAS  PubMed  Google Scholar 

  47. Musaogullari A, Mandato A, Chai YC (2020) Role of glutathione depletion and reactive oxygen species generation on caspase-3 activation: a study with the kinase inhibitor staurosporine. Front Physiol 28(11):998

    Article  Google Scholar 

  48. Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20(10):2407

    Article  PubMed  PubMed Central  Google Scholar 

  49. RedzaDutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys—Mol Cell Res 1863(12):2977–2992

    CAS  Google Scholar 

  50. Hou N, Liu N, Han J, Yan Y, Li J (2017) Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs 28(1):59–65

    Article  CAS  PubMed  Google Scholar 

  51. Liu Z, Liu H, Yuan X, Wang Y, Li L, Wang G, Song J, Shao Z, Fu R (2018) Downregulation of Pim-2 induces cell cycle arrest in the G0/G1 phase via the p53-non-dependent p21 signaling pathway. Oncol Lett 15(4):4079–4086

    PubMed  PubMed Central  Google Scholar 

  52. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karimian A, Ahmadi Y, Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42:63–71

    Article  CAS  PubMed  Google Scholar 

  54. Xia M, Knezevic D, Vassilev LT (2011) p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation. Oncogene 30(3):346–355

    Article  PubMed  Google Scholar 

  55. Sadeghi Ekbatan S, Li XQ, Ghorbani M, Azadi B, Kubow S (2018) Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. Int J Mol Sci 19(3):723

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

No.

Funding

The author(s) received no financial support for the research.

Author information

Authors and Affiliations

Authors

Contributions

AB, SSS, and AGR carried out the experiments, conceived and designed the research, and wrote, analyzed, funded, and critically revised the manuscript. AF (HPLC), AGR (RT-qPCR), and SN and MK (MTT) assisted with the experiments and were involved in the study design, implementation, and manuscript revision. The final manuscript was read and approved by all authors. AGR is the corresponding author.

Corresponding author

Correspondence to Ali Ghorbani Ranjbary.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbary, A.G., Bagherzadeh, A., Sabbaghi, S.S. et al. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells. Mol Biol Rep 50, 9845–9857 (2023). https://doi.org/10.1007/s11033-023-08854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08854-y

Keywords

Navigation