Skip to main content
Log in

Genetic potential of grain-related traits in rice landraces: phenomics and multi-locus association analyses

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Grain length, width, weight, and the number of grains per panicle are crucial determinants contributing to yield in cereal crops. Understanding the genetic basis of grain-related traits has been the main research object in crop science.

Methods and results

Kerala has a collection of different rice landraces. Characterization of these valuable genetic resources for 39 distinct agro-morphological traits was carried out in two seasons from 2017 to 2019 directly in farmers field. Most characteristics were polymorphic except ligule shape, leaf angle, and panicle axis. The results of principal component analysis implied that leaf length, plant height, culm length, flag leaf length, and grain-related traits were the principal discriminatory characteristics of rice landraces. For identifying the genetic basis of key grain traits of rice, three multi locus GWAS models were performed based on 1,47,994 SNPs in 73 rice accessions. As a result, 48 quantitative trait nucleotides (QTNs) were identified to be associated with these traits. After characterization of their function and expression, 15 significant candidate genes involved in regulating grain width, number of grains per panicle, and yield were identified.

Conclusions

The detected QTNs and candidate genes in this study could be further used for marker-assisted high-quality breeding of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu Y, Chuan M, Wang H et al (2022) Genetic and molecular factors in determining grain number per panicle of rice. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.964246

  3. Li R, Li M, Ashraf U et al (2019) Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front Plant Sci 10:543. https://doi.org/10.3389/fpls.2019.00543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhandari A, Sandhu N, Bartholome J et al (2020) Genome-wide association study for yield and yield related traits under reproductive stage drought in a diverse indica-aus Rice Panel. Rice (N Y) 13:53. https://doi.org/10.1186/s12284-020-00406-3

    Article  PubMed  Google Scholar 

  5. Ponce K, Zhang Y, Guo L et al (2020) Genome-wide association study of grain size traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population. Front Plant Sci 11:395. https://doi.org/10.3389/fpls.2020.00395

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang G, Wang R, Ma J et al (2021) Genome-wide association studies of yield-related traits in high-latitude japonica rice. BMC Genom Data 22:39. https://doi.org/10.1186/s12863-021-00995-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang N, Chen H, Qian Y et al (2023) Genome-wide association study of rice grain shape and chalkiness in a worldwide collection of Xian accessions. Plants 12:419. https://doi.org/10.3390/plants12030419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Semwal D, Pradheep K, John KJ et al (2019) Status of Rice (Oryza sativa L.) Genepool Collected from Western Ghats Region of India: gap analysis and diversity distribution mapping using GIS tools. Ind Jour Plant Gene Resour 32:166. https://doi.org/10.5958/0976-1926.2019.00021.4

    Article  Google Scholar 

  9. Beena R, Kirubakaran S, Nithya N et al (2021) Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC Plant Biol 21:484. https://doi.org/10.1186/s12870-021-03272-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peringottillam M, Kunhiraman Vasumathy S, Selvakumar HKK, Alagu M (2022) Genetic diversity and population structure of rice (Oryza sativa L.) landraces from Kerala, India analyzed through genotyping-by-sequencing. Mol Genet Genomics 297:169–182. https://doi.org/10.1007/s00438-021-01844-4

    Article  CAS  PubMed  Google Scholar 

  11. IRRI (2013) Standard evaluation system for Rice (SES). International Rice Research Institute (IRRI), pp 1–65

  12. IBM Corp (2011) IBM SPSS Statistics for Windows Version 20.0

  13. Wei T, Simko V (2017) R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84)

  14. Rosseel Y (2012) lavaan: an R Package for Structural equation modeling. J Stat Softw 48:1–36. https://doi.org/10.18637/jss.v048.i02

    Article  Google Scholar 

  15. Epskamp S (2015) semPlot: unified visualizations of structural equation models. Struct Equation Modeling: Multidisciplinary J 22:474–483. https://doi.org/10.1080/10705511.2014.937847

    Article  Google Scholar 

  16. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue

  18. Poland JA, Rife TW (2012) Genotyping-by‐Sequencing for Plant Breeding and Genetics. The Plant Genome 5:-Wiley Online Library. https://acsess.onlinelibrary.wiley.com/doi/full/https://doi.org/10.3835/plantgenome2012.05.0005

  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Levine D, Shen J et al (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328. https://doi.org/10.1093/bioinformatics/bts606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y-W, Tamba CL, Wen Y-J et al (2020) mrMLM v4.0.2: an R platform for multi-locus genome-wide Association Studies. Genomics Proteom Bioinf 18:481–487. https://doi.org/10.1016/j.gpb.2020.06.006

    Article  Google Scholar 

  22. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  23. Volante A, Desiderio F, Tondelli A et al (2017) Genome-wide analysis of japonica Rice Performance under Limited Water and permanent flooding conditions. Front Plant Sci 8:1862. https://doi.org/10.3389/fpls.2017.01862

    Article  PubMed  PubMed Central  Google Scholar 

  24. Volante A, Tondelli A, Aragona M et al (2017) Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice 10:29. https://doi.org/10.1186/s12284-017-0168-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800. https://doi.org/10.1371/journal.pone.0021800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manjunatha GA, Elsy CR, Rajendran P et al (2018) Agro-morphological characterization of rice (Oryza sativa L.) landraces of Wayanad, Kerala. J Pharmacogn Phytochem 7:1409–1414

    Google Scholar 

  27. Kovinich N, Kayanja G, Chanoca A et al (2015) Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal Behav 10:e1027850. https://doi.org/10.1080/15592324.2015.1027850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy S, Rathi RS, Misra AK et al (2014) Phenotypic characterization of indigenous rice (Oryza sativa L.) germplasm collected from the state of Nagaland, India. Plant Genet Resour 12:58–66. https://doi.org/10.1017/S1479262113000282

    Article  Google Scholar 

  29. Saha SR, Hassan L, Haque MA et al (2019) Genetic variability, heritability, correlation and path analyses of yield components in traditional rice (Oryza sativa L.) landraces: variability and traits association in rice. J Bangladesh Agricultural Univ 17:26–32

    Article  Google Scholar 

  30. Bassuony NN, Zsembeli J (2021) Inheritance of some flag leaf and yield characteristics by half-diallel analysis in rice crops (Oryza sativa L). Cereal Res Commun 49:503–510. https://doi.org/10.1007/s42976-020-00115-z

    Article  CAS  Google Scholar 

  31. Zhong H, Liu S, Sun T et al (2021) Multi-locus genome-wide association studies for five yield-related traits in rice. BMC Plant Biol 21:364. https://doi.org/10.1186/s12870-021-03146-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mogga M, Sibiya J, Shimelis H et al (2019) Correction: diversity analysis and genome-wide association studies of grain shape and eating quality traits in rice (Oryza sativa L.) using DArT markers. PLoS ONE 14:e0212078. https://doi.org/10.1371/journal.pone.0212078

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rohilla M, Singh N, Mazumder A et al (2020) Genome-wide association studies using 50 K rice genic SNP chip unveil genetic architecture for anaerobic germination of deep-water rice population of Assam, India. Mol Genet Genomics 295:1211–1226. https://doi.org/10.1007/s00438-020-01690-w

    Article  CAS  PubMed  Google Scholar 

  34. Soumya PR, Burridge AJ, Singh N et al (2021) Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder’s Affymetrix array. Sci Rep 11:7601. https://doi.org/10.1038/s41598-021-87182-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kirkby RA (1986) Uses of on-farm trials in a crop improvement program. In: Pigeonpea Workshop, 8–11 April. p 10PP

  36. Nguyen DT, Gomez LD, Harper A et al (2020) Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw. Biotechnol Biofuels 13:165. https://doi.org/10.1186/s13068-020-01807-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y-M, Jia Z, Dunwell JM (2019) Editorial: the applications of New Multi-Locus GWAS Methodologies in the genetic dissection of Complex Traits. Front Plant Sci 10:100. https://doi.org/10.3389/fpls.2019.00100

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang N, Parco A, Mew T et al (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breeding 3:105–113. https://doi.org/10.1023/A:1009683603862

    Article  CAS  Google Scholar 

  39. Luo LJ, Li ZK, Mei HW et al (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hua JP, Xing YZ, Xu CG et al (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895. https://doi.org/10.1093/genetics/162.4.1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshida S, Ikegami M, Kuze J et al (2002) QTL analysis for Plant and Grain characters of sake-brewing Rice using a doubled Haploid Population. Breed Sci 52:309–317. https://doi.org/10.1270/jsbbs.52.309

    Article  CAS  Google Scholar 

  42. Thomson MJ, Tai TH, McClung AM et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493. https://doi.org/10.1007/s00122-003-1270-8

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Li X, Fu Y et al (2013) GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol 55:938–949. https://doi.org/10.1111/jipb.12062

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Yu H, Xiong G et al (2017) Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate Plant Architecture in Rice. Plant Cell 29:697–707. https://doi.org/10.1105/tpc.16.00879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang K, Shim Y, Gi E et al (2019) Mutation of ONAC096 enhances Grain Yield by increasing panicle number and delaying Leaf Senescence during Grain Filling in Rice. Int J Mol Sci 20:5241. https://doi.org/10.3390/ijms20205241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim I-S, Kim Y-S, Yoon H-S (2013) Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3519–3533. https://doi.org/10.1007/s00253-012-4410-8

    Article  CAS  PubMed  Google Scholar 

  47. Redillas MCFR, Jeong JS, Kim YS et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805. https://doi.org/10.1111/j.1467-7652.2012.00697.x

    Article  CAS  PubMed  Google Scholar 

  48. Kusumi K, Hashimura A, Yamamoto Y et al (2017) Contribution of the S-type Anion Channel SLAC1 to Stomatal Control and its dependence on Developmental Stage in Rice. Plant Cell Physiol 58:2085–2094. https://doi.org/10.1093/pcp/pcx142

    Article  CAS  PubMed  Google Scholar 

  49. Wu T, Ali A, Wang J et al (2021) A homologous gene of OsREL2/ASP1, ASP-LSL regulates pleiotropic phenotype including long sterile lemma in rice. BMC Plant Biol 21:390. https://doi.org/10.1186/s12870-021-03163-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bae K-D, Um T-Y, Yang W-T et al (2021) Characterization of dwarf and narrow leaf (dnl-4) mutant in rice. Plant Signal Behav 16:1849490. https://doi.org/10.1080/15592324.2020.1849490

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India (Grant No. ECR/2016/001934).

Author information

Authors and Affiliations

Authors

Contributions

AM conceived and supervised the research work; MP prepared genetic materials; AM acquired research grant for the research; KTS, MP performed data analyses; MP wrote the manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alagu Manickavelu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interest to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peringottillam, M., Sundaram, K.T. & Manickavelu, A. Genetic potential of grain-related traits in rice landraces: phenomics and multi-locus association analyses. Mol Biol Rep 50, 9323–9334 (2023). https://doi.org/10.1007/s11033-023-08807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08807-5

Keywords

Navigation