Skip to main content

Advertisement

Log in

Immunobiology of cancer stem cells and their immunoevasion mechanisms

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

References

  1. Maccalli C, Rasul KI, Elawad M, Ferrone S (2018) The role of cancer stem cells in the modulation of anti-tumor immune responses. In Seminars in cancer biology. https://doi.org/10.1016/j.semcancer.2018.09.006

  2. Marzagalli M, Fontana F, Raimondi M, Limonta P (2021) Cancer stem cells—Key players in tumor relapse. https://doi.org/10.3390/cancers13030376. Cancers

  3. Ciardiello C, Leone A, Budillon A (2018) The crosstalk between cancer stem cells and microenvironment is critical for solid tumor progression: the significant contribution of extracellular vesicles. Stem Cells International. https://doi.org/10.1155/2018/6392198

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, Kobayashi KS, Sachidanandam R, Baccarini A, Merad M et al (2018) Quiescent tissue stem cells evade immune surveillance. https://doi.org/10.1016/j.immuni.2018.02.001. Immunity

  5. Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. https://doi.org/10.5483/BMBRep.2017.50.3.222

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L (2019) Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer’s source. Progress in molecular biology and translational sciencehttps://doi.org/10.1016/bs.pmbts.2019.03.008

  7. Müller L, Tunger A, Plesca I, Wehner R, Temme A, Westphal D, Meier F, Bachmann M, Schmitz M (2020) Bidirectional crosstalk between cancer stem cells and immune cell subsets. Front Immunol. https://doi.org/10.3389/fimmu.2020.00140

    Article  PubMed  PubMed Central  Google Scholar 

  8. Castagnoli L, De Santis F, Volpari T, Vernieri C, Tagliabue E, Di Nicola M, Pupa SM (2020) Cancer Stem cells: Devil or Savior—Looking behind the Scenes of Immunotherapy failure. Cells. https://doi.org/10.3390/cells9030555

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A, Ferguson KM et al (2021) Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. https://doi.org/10.1016/j.cell.2021.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V (2021) Cellular immunotherapy targeting cancer stem cells: preclinical evidence and clinical perspective. https://doi.org/10.3390/cells10030543. Cells

  11. Tomei S, Ibnaof O, Ravindran S, Ferrone S, Maccalli C (2021) Cancer stem cells are possible key players in regulating anti-tumor immune responses: the role of immunomodulating molecules and MicroRNAs. https://doi.org/10.3390/cancers13071674. Cancers

  12. Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME, Pelayo R, Ortiz-Sánchez E (2021) The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther. https://doi.org/10.1186/s13287-021-02562-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Islam F, Qiao B, Smith RA, Gopalan V, Lam AK (2015) Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. https://doi.org/10.1016/j.yexmp.2015.02.002

    Article  PubMed  Google Scholar 

  14. Galassi C, Musella M, Manduca N, Maccafeo E, Sistigu A (2021) The immune privilege of cancer stem cells: a key to understanding tumor immune escape and therapy failure. https://doi.org/10.3390/cells10092361. Cells

  15. Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK (2021) Cancer stem cells in tumor modeling: Challenges and future directions. Adv NanoBiomed Res. https://doi.org/10.1002/anbr.202100017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schumann J, Stanko K, Schliesser U, Appelt C, Sawitzki B (2015) Differences in CD44 surface expression levels and function discriminates IL-17 and IFN-γ producing helper T cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0132479

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baaten BJ, Li CR, Deiro MF, Lin MM, Linton PJ, Bradley LM (2010) CD44 regulates survival and memory development in Th1 cells. https://doi.org/10.1016/j.immuni.2009.10.011. Immunity

  18. Ying J, Tsujii M, Kondo J, Hayashi Y, Kato M, Akasaka T, Inoue T, Shiraishi E, Inoue T, Hiyama S, Tsujii Y (2015) The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. Int J Oncol. https://doi.org/10.3892/ijo.2015.2851

    Article  PubMed  Google Scholar 

  19. Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A (2019) Cancer stem cells in head and neck squamous cell carcinoma: identification, characterization and clinical implications. Cancers. https://doi.org/10.3390/cancers11050616

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol. http://www.nature.com/doifinder/10.1038.ni.3153

  21. Bayik D, Lathia JD (2021) Cancer stem cell–immune cell crosstalk in tumour progression. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00366-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cioffi M, Trabulo S, Hidalgo M, Costello E, Greenhalf W, Erkan M, Kleeff J, Sainz B, Heeschen C (2015) Inhibition of CD47 effectively targets pancreatic Cancer stem cells via dual MechanismsCD47 targets pancreatic Cancer stem cells. https://doi.org/10.1158/1078-0432.CCR-14-1399. Clinical cancer research

  23. Liu L, Zhang L, Yang L, Li H, Li R, Yu J, Yang L, Wei F, Yan C, Sun Q et al (2017) Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol. https://doi.org/10.3389/fimmu.2017.00404

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, Bennett ML, Olson A, Azad TD, Sinha R et al (2019) Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1721434116

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O’Rourke T, Narayanan S, Papadopoulos K, Fisher GA (2019) First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. https://doi.org/10.1200/JCO.18.02018

    Article  PubMed  PubMed Central  Google Scholar 

  26. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, Hammerman P (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. https://doi.org/10.1016/j.immuni.2017.02.001

  27. Kim S, Cho H, Hong SO, Oh SJ, Lee HJ, Cho E, Woo SR, Song JS, Chung JY, Son SW, Yoon SM (2021) LC3B upregulation by NANOG promotes immune resistance and stem-like property through hyperactivation of EGFR signaling in immune-refractory tumor cells. https://doi.org/10.1080/15548627.2020.1805214. Autophagy

  28. Johnson AL, Laterra J, Lopez-Bertoni H (2022) Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol. https://doi.org/10.3389/fonc.2022.995498

    Article  PubMed  PubMed Central  Google Scholar 

  29. Igarashi Y, Sasada T (2020) Cancer vaccines: toward the next breakthrough in cancer immunotherapy. J Immunol Res. https://doi.org/10.1155/2020/5825401

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rasool S, Rutella S, Ferrone S, Maccalli C (2019) Cancer Stem Cells: The Players of Immune Evasion from Immunotherapy. In Cancer Stem Cell Resistance to Targeted Therapy. https://doi.org/10.1007/978-3-030-16624-3_9

  31. Pastò A, Consonni FM, Sica A (2020) Influence of innate immunity on cancer cell stemness. Int J Mol Sci. https://doi.org/10.3390/ijms21093352

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez JA (2017) HLAmediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via tcell activation. Oncol Lett. https://doi.org/10.3892/ol.2017.6784

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang X, Liang L, Chen G, Liu C (2021) Modulation of immune components on stem cell and dormancy in cancer. Cells. https://doi.org/10.3390/cells10112826

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM et al (2010) Immunobiological characterization of Cancer Stem cells isolated from Glioblastoma PatientsImmune Properties of GBM-Derived stem cells. https://doi.org/10.1158/1078-0432.CCR-09-2730. Clinical Cancer Research

  35. Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, Bissolati M, Ghirardelli L, Orsenigo E, Ferrone S et al (2014) Cancer-initiating cells from colorectal cancer patients escape from T cell–mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol. https://doi.org/10.4049/jimmunol.1301342

    Article  PubMed  Google Scholar 

  36. Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H et al (2019) PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. https://doi.org/10.1016/j.canlet.2019.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rezalotfi A, Ahmadian E, Aazami H, Solgi G, Ebrahimi M (2019) Gastric cancer stem cells effect on Th17/Treg balance; a bench to beside perspective. Front Oncol. https://doi.org/10.3389/fonc.2019.00226

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang Y, Wu KE, Zhao E, Li W, Shi L, Xie G, Jiang B, Wang Y, Li R, Zhang P, Shuai X (2015) B7-H1 enhances proliferation ability of gastric cancer stem-like cells as a receptor. Oncol Lett. https://doi.org/10.3892/ol.2015.2949

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kenkel JA, Tseng WW, Davidson MG, Tolentino LL, Choi O, Bhattacharya N, Seeley ES, Winer DA, Reticker-Flynn NE, Engleman EG (2017) An immunosuppressive dendritic cell subset accumulates at secondary Sites and promotes metastasis in pancreatic CancerImmunosuppressive DC Subset promotes PDAC metastasis. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-16-2212

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barilla RM, Diskin B, Caso RC, Lee KB, Mohan N, Buttar C, Adam S, Sekendiz Z, Wang J, Salas RD et al (2019) Specialized dendritic cells induce tumor-promoting IL-10 + IL-17 + FoxP3 neg regulatory CD4 + T cells in pancreatic carcinoma. Nat Commun. https://doi.org/10.1038/s41467-019-09416-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grange C, Tapparo M, Tritta S, Deregibus MC, Battaglia A, Gontero P, Frea B, Camussi G (2015) Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer. https://doi.org/10.1186/s12885-015-2025-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsu YL, Chen YJ, Chang WA, Jian SF, Fan HL, Wang JY, Kuo PL (2018) Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. https://doi.org/10.3390/ijms19082427

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang D, Sun H, Wei J, Cen B, DuBois RN (2017) CXCL1 is critical for Premetastatic Niche formation and metastasis in colorectal CancerCXCL1 and Premetastatic Niche. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-16-3199

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S, Chen X, Liu X, Chao HP, Whitney P et al (2016) Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun. https://doi.org/10.1038/ncomms10798

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W et al (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-09-0734

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sainz B, Carron E, Vallespinós M, Machado HL (2016) Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediat Inflamm. https://doi.org/10.1155/2016/9012369

    Article  Google Scholar 

  47. Fakhrejahani F, Tomita Y, Maj-Hes A, Trepel JB, De Santis M, Apolo AB (2015) Immunotherapies for bladder cancer: a new hope. Curr Opin Urol. https://doi.org/10.1097/MOU.0000000000000213

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen D, Wang CY (2019) Targeting cancer stem cells in squamous cell carcinoma. Precision Clin Med. https://doi.org/10.1093/pcmedi/pbz016

    Article  Google Scholar 

  49. Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, García-Acevez SJ (2020) Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Therapy. https://doi.org/10.1038/s41392-020-0205-z

    Article  Google Scholar 

  50. Gao R, He B, Huang Q, Wang Z, Yan M, Lam EW, Lin S, Wang B, Liu Q (2021) Cancer cell immune mimicry delineates onco-immunologic modulation. https://doi.org/10.1016/j.isci.2021.103133. Iscience

  51. Héninger E, Krueger TE, Lang JM (2015) Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. https://doi.org/10.3389/fimmu.2015.00029

    Article  PubMed  PubMed Central  Google Scholar 

  52. Terranova-Barberio M, Thomas S, Munster PN (2016) Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy. https://doi.org/10.2217/imt-2016-0014

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bozic I, Wu CJ (2020) Delineating the evolutionary dynamics of cancer from theory to reality. Nat Cancer. https://doi.org/10.1038/s43018-020-0079-6

    Article  PubMed  Google Scholar 

  54. Zhang D, Tang DG, Rycaj K (2018) Cancer stem cells: regulation programs, immunological properties and immunotherapy. In Seminars in cancer biology. https://doi.org/10.1016/j.semcancer.2018.05.001

  55. Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K (2015) Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. https://doi.org/10.3109/03008207.2015.1066780

    Article  PubMed  PubMed Central  Google Scholar 

  56. Talukdar S, Emdad L, Das SK, Fisher PB (2020) EGFR: an essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res. https://doi.org/10.1016/bs.acr.2020.04.003

    Article  PubMed  Google Scholar 

  57. Vitale I, Shema E, Loi S, Galluzzi L (2021) Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. https://doi.org/10.1038/s41591-021-01233-9

    Article  PubMed  Google Scholar 

  58. Baxevanis CN, Perez SA (2015) Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines. https://doi.org/10.3390/vaccines3030597

    Article  PubMed  PubMed Central  Google Scholar 

  59. López-Lázaro M (2015) Stem cell division theory of cancer. Cell Cycle. https://doi.org/10.1080/15384101.2015.1062330

    Article  PubMed  PubMed Central  Google Scholar 

  60. Garofano L, Migliozzi S, Oh YT, D’Angelo F, Najac RD, Ko A, Frangaj B, Caruso FP, Yu K, Yuan J et al (2021) Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat cancer. https://doi.org/10.1038/s43018-020-00159-4

    Article  PubMed  PubMed Central  Google Scholar 

  61. Park SY, Nam JS (2020) The force awakens: metastatic dormant cancer cells. Exp Mol Med. https://doi.org/10.1038/s12276-020-0423-z

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lei MM, Lee TK (2021) Cancer stem cells: emerging key players in immune evasion of cancers. Front Cell Dev Biology. https://doi.org/10.3389/fcell.2021.692940

    Article  Google Scholar 

  63. Krall JA, Reinhardt F, Mercury OA, Pattabiraman DR, Brooks MW, Dougan M, Lambert AW, Bierie B, Ploegh HL, Dougan SK et al (2018) The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan3464

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oshimori N, Guo Y, Taniguchi S (2021) An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol. https://doi.org/10.1002/path.5655

    Article  PubMed  PubMed Central  Google Scholar 

  65. Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, DeNardo DG et al (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-014-1527-x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fang M, Li Y, Huang K, Qi S, Zhang J, Zgodzinski W, Majewski M, Wallner G, Gozdz S, Macek P et al (2017) IL33 promotes Colon Cancer Cell Stemness via JNK activation and macrophage RecruitmentIL33 and Colon tumorigenesis. https://doi.org/10.1158/0008-5472.CAN-16-1602. Cancer research

  67. Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, Alvaro D, Chiorino G, Forti E, Glaser S, Alpini G et al (2017) Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J Hepatol. https://doi.org/10.1016/j.jhep.2016.08.012

    Article  PubMed  Google Scholar 

  68. Tao W, Chu C, Zhou W, Huang Z, Zhai K, Fang X, Huang Q, Zhang A, Wang X, Yu X et al (2020) Dual role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun. https://doi.org/10.1038/s41467-020-16827-z

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L, Bai X (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes & development. http://www.genesdev.org/cgi/doi/https://doi.org/10.1101/gad.294348.116

  70. Lu X, Kang Y (2011) Cell fusion hypothesis of the cancer stem cell. Cell Fusion in Health and Disease. https://doi.org/10.1007/978-94-007-0782-5_6

    Article  Google Scholar 

  71. Nagler C, Zänker KS, Dittmar T (2011) Cell fusion, drug resistance and recurrence CSCs. Cell Fusion in Health and Disease. https://doi.org/10.1007/978-94-007-0782-5_9

    Article  Google Scholar 

  72. Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW et al (2019) A positive feedback loop between cancer stem-like cells and tumor‐associated neutrophils controls hepatocellular carcinoma progression. Hepatology. https://doi.org/10.1002/hep.30630

    Article  PubMed  Google Scholar 

  73. Zhang W, Gu J, Chen J, Zhang P, Ji R, Qian H, Xu W, Zhang X (2017) Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol Rep. https://doi.org/10.3892/or.2017.5942

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oshima H, Ishikawa T, Yoshida GJ, Naoi K, Maeda Y, Naka K, Ju X, Yamada Y, Minamoto T, Mukaida N et al (2014) TNF-α/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene. https://doi.org/10.1038/onc.2013.356

    Article  PubMed  Google Scholar 

  75. Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH (2019) Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. https://doi.org/10.1186/s13045-019-0699-4

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M et al (2015) Tenascin-C protects Cancer stem–like cells from Immune Surveillance by arresting T-cell ActivationCSCs and Tenascin-C. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-2346

    Article  PubMed  Google Scholar 

  77. Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS (2014) Tenascins in stem cell niches. Matrix Biol. https://doi.org/10.1016/j.matbio.2014.01.007

    Article  PubMed  Google Scholar 

  78. Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H, Tandler C, Mbarga M, Schaefer T, Falcone M et al (2019) Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. https://doi.org/10.1038/s41586-019-1410-1

    Article  PubMed  PubMed Central  Google Scholar 

  79. Morrison BJ, Steel JC, Morris JC (2018) Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells. BMC Cancer. https://doi.org/10.1186/s12885-018-4389-3

    Article  PubMed  PubMed Central  Google Scholar 

  80. Beier CP, Kumar P, Meyer K, Leukel P, Bruttel V, Aschenbrenner I, Riemenschneider MJ, Fragoulis A, Rümmele P, Lamszus K et al (2012) The cancer stem cell subtype determines immune infiltration of glioblastoma. Stem Cells Dev. https://doi.org/10.1089/scd.2011.0660

    Article  PubMed  PubMed Central  Google Scholar 

  81. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, Singh B, Rosenblum MD, Fuchs E (2019) Adaptive immune resistance emerges from tumor-initiating stem cells. Cell. https://doi.org/10.1016/j.cell.2019.03.025

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yao Y, Ye H, Qi Z, Mo L, Yue Q, Baral A, Hoon DS, Vera JC, Heiss JD, Chen CC et al (2016) B7-H4 (B7x)–Mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in Glioma PatientsB7x immunosuppression in human gliomas. https://doi.org/10.1158/1078-0432.CCR-15-0858. Clinical Cancer Research

  83. Mirzaei R, Sarkar S, Dzikowski L, Rawji KS, Khan L, Faissner A, Bose P, Yong VW (2018) Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. https://doi.org/10.1080/2162402X.2018.1478647. Oncoimmunology

  84. Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N (2017) Suppressive IL-17A + Foxp3 + and ex-Th17 IL-17AnegFoxp3 + Treg cells are a source of tumour-associated Treg cells. Nat Commun. https://doi.org/10.1038/ncomms14649

    Article  PubMed  PubMed Central  Google Scholar 

  85. Du R, Zhao H, Yan F, Li H (2014) IL-17 + Foxp3 + T cells: an intermediate differentiation stage between Th17 cells and regulatory T cells. J Leukoc Biol. https://doi.org/10.1189/jlb.1RU0114-010RR

    Article  PubMed  Google Scholar 

  86. Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T, Yang P (2011) Foxp3 + IL-17 + T cells promote development of cancer‐initiating cells in colorectal cancer. J Leukoc Biol. https://doi.org/10.1189/jlb.0910506

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xue J, Zhu Y, Sun Z, Ji R, Zhang X, Xu W, Yuan X, Zhang B, Yan Y, Yin L et al (2015) Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer. https://doi.org/10.1186/s12885-015-1780-1

    Article  PubMed  PubMed Central  Google Scholar 

  88. Patel SA, Dave MA, Bliss SA, Giec-Ujda AB, Bryan M, Pliner LF, Rameshwar P (2014) Treg/Th17 polarization by distinct subsets of breast cancer cells is dictated by the interaction with mesenchymal stem cells. J cancer stem cell Res. https://doi.org/10.14343/JCSCR.2014.2e1003

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z et al (2017) IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.14835

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR (2019) Regulatory T cells promote overexpression of Lgr5 on gastric cancer cells via TGF-beta1 and confer poor prognosis in gastric cancer. Front Immunol. https://doi.org/10.3389/fimmu.2019.01741

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arce-Sillas A, Álvarez-Luquín DD, Tamaya-Domínguez B, Gomez-Fuentes S, Trejo-García A, Melo-Salas M, Cárdenas G, Rodríguez-Ramírez J, Adalid-Peralta L (2016) Regulatory T cells: molecular actions on effector cells in immune regulation. J Immunol Res. https://doi.org/10.1155/2016/1720827

    Article  PubMed  PubMed Central  Google Scholar 

  92. Riether C, Schürch CM, Ochsenbein AF (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death & Differentiation. https://doi.org/10.1038/cdd.2014.89

    Article  Google Scholar 

  93. Shin SP, Goh AR, Kang HG, Kim SJ, Kim JK, Kim KT, Lee JH, Bae YS, Jung YS, Lee SJ (2019) CD200 induces epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma via β-Catenin-mediated nuclear translocation. https://doi.org/10.3390/cancers11101583. Cancers

  94. Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM (2010) The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell CarcinomaCD200 in SCC Metastasis. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-4380

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu B, Cao Y, Li Y, Ma H, Yang M, Zhang Q, Li G, Zhang K, Wu Y, Zhou Y et al (2022) Glioma stem cells upregulate CD39 expression to escape Immune Response through SOX2 modulation. https://doi.org/10.3390/cancers14030783. Cancers

  96. Celià-Terrassa T, Liu DD, Choudhury A, Hang X, Wei Y, Zamalloa J, Alfaro-Aco R, Chakrabarti R, Jiang YZ, Koh BI et al (2017) Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a–LCOR axis. Nat Cell Biol. https://doi.org/10.1038/ncb3533

    Article  PubMed  PubMed Central  Google Scholar 

  97. Noman MZ, Janji B, Hu S, Wu JC, Martelli F, Bronte V, Chouaib S (2015) Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-15-0405

    Article  PubMed  Google Scholar 

  98. Whiteside TL (2017) Exosomes in cancer: another mechanism of tumor-induced immune suppression. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. https://doi.org/10.1007/978-3-319-67577-0_6

  99. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res. https://doi.org/10.1016/bs.acr.2015.04.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Havva Marzban contributed to the study conception and design. The first draft of the manuscript was written by Havva Marzban, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Havva Marzban.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzban, H., Pedram, N., Amini, P. et al. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol Biol Rep 50, 9559–9573 (2023). https://doi.org/10.1007/s11033-023-08768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08768-9

Keywords

Navigation