Skip to main content
Log in

Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated.

Methods and results

To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5–27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR).

Conclusions

The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data presented in this study are available on fair request to the corresponding author.

Abbreviations

DEGs:

Differential expression genes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

LT:

Low temperature

References

  1. Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10(3):290–295. https://doi.org/10.1016/j.pbi.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  2. Ji L, Li P, Su Z, Li M, Guo S (2020) Cold-tolerant introgression line construction and low-temperature stress response analysis for bell pepper. Plant Signal Behav 15(7):1773097. https://doi.org/10.1080/15592324.2020.1773097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984. https://doi.org/10.1105/tpc.108.063958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60(9):745–756. https://doi.org/10.1111/jipb.12706

    Article  PubMed  Google Scholar 

  5. Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235(6):1091–1105. https://doi.org/10.1007/s00425-012-1641-y

    Article  CAS  PubMed  Google Scholar 

  6. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577. https://doi.org/10.1104/pp.110.161794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali MM, Yousef AF, Li B, Chen F (2021) Effect of environmental factors on growth and development of fruits. Trop Plant Biology 14(3):226–238. https://doi.org/10.1007/s12042-021-09291-6

    Article  Google Scholar 

  8. Bakker JC, van-Uffelen AM (1988) The effects of diurnal temperature regimes on growth and yield of glasshouse sweet pepper. Neth J Agric Sci 36(1):201–208. https://doi.org/10.18174/njas.v36i3.16670

    Article  Google Scholar 

  9. Hincha DK, Zuther E (2014) Introduction: plant cold acclimation and freezing tolerance. In: Hincha DK, Zuther E (eds) Plant cold acclimation: methods and protocols. Springer, New York, pp 1–6

    Chapter  Google Scholar 

  10. Pressman E, Shaked R, Firon N (2006) Exposing pepper plants to high day temperatures prevents the adverse low night temperature symptoms. Physiologia Plantarum 126(4):618–626. https://doi.org/10.1111/j.1399-3054.2006.00623.x

    Article  CAS  Google Scholar 

  11. León-Chan RG, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas JA, Heredia JB, León-Félix J (2017) Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ Exp Bot 139:143–151. https://doi.org/10.1016/j.envexpbot.2017.05.006

    Article  CAS  Google Scholar 

  12. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del RÍOLA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35(2):281–295. https://doi.org/10.1111/j.1365-3040.2011.02310.x

    Article  CAS  PubMed  Google Scholar 

  13. Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y, Hancock D, Field D (2006) Concept of sample in OMICS technology. Omics 10(2):127–137. https://doi.org/10.1089/omi.2006.10.127

    Article  CAS  PubMed  Google Scholar 

  14. Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb0411s89

    Article  PubMed  Google Scholar 

  15. Leon R, Lightbourn L, lopez-meyer M, Amarillas L, Heredia J, Martínez-Bastidas T, Villicaña C, León-Félix J (2020) Differential gene expression of anthocyanin biosynthetic genes under low temperature and ultraviolet-B radiation in bell pepper (Capsicum annuum). Int J Agric Biology 23:531–538. https://doi.org/10.17957/IJAB/15.1315

    Article  Google Scholar 

  16. Kong X-m, Zhou Q, Luo F, Wei B-d, Wang Y-j, Sun H-j, Zhao Y-b, Ji S-j (2019) Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress. Plant Physiol Biochem 139:314–324. https://doi.org/10.1016/j.plaphy.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  17. Ji L, Li P, Su Z, Li M, Wang H (2020) Transcriptome analysis reveals candidate genes involved in low temperature stress in bell pepper. Russ J Plant Physiol 67(6):1116–1125. https://doi.org/10.1134/S1021443720060084

    Article  CAS  Google Scholar 

  18. Morales-Merida B, Villicaña C, Perales-Torres A, Martinez Montoya H, Castillo-Ruiz O, Leon R, Lightbourn L, Heredia JB, León-Félix J (2021) Transcriptomic analysis in response to combined stress by UV-B radiation and cold in belle pepper (Capsicum annuum). Int J Agric Biol. https://doi.org/10.17957/IJAB/15.1753

    Article  Google Scholar 

  19. Zhang J, Liang L, Xie Y, Zhao Z, Su L, Tang Y, Sun B, Lai Y, Li H (2022) Transcriptome and metabolome analyses reveal molecular responses of two pepper (Capsicum annuum L.). Cultivars Cold Stress. https://doi.org/10.3389/fpls.2022.819630

    Article  Google Scholar 

  20. Rodriguez A, De La Vega P (2021) Tallos (stems). Crabtree Publishing Company, St. Catharines

    Google Scholar 

  21. Cohen SP, Leach JE (2019) Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 9(1):6273. https://doi.org/10.1038/s41598-019-42731-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang G, Wang Y, Zhang K, Gao C (2014) Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Mol Biol Rep 41(3):1279–1289. https://doi.org/10.1007/s11033-013-2973-9

    Article  CAS  PubMed  Google Scholar 

  23. Liu J-G, Yao Q-H, Zhang Z, Peng R-h, Xiong A-S, Xu F, Zhu H (2005) Isolation and characterization of a cDNA encoding two novel heat-shock factor OsHSF6 and OsHSF12 in Oryza sativa L. J Biochem Mol Biol 38:602–608. https://doi.org/10.5483/bmbrep.2005.38.5.602

    Article  CAS  PubMed  Google Scholar 

  24. Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286(2):171–187. https://doi.org/10.1007/s00438-011-0638-8

    Article  CAS  PubMed  Google Scholar 

  25. Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD (2009) Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem 284(31):20848–20857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286(5):321–332. https://doi.org/10.1007/s00438-011-0647-7

    Article  CAS  PubMed  Google Scholar 

  27. Waters ER, Vierling E (2020) Plant small heat shock proteins-evolutionary and functional diversity. New Phytol 227(1):24–37. https://doi.org/10.1111/nph.16536

    Article  CAS  PubMed  Google Scholar 

  28. Bourgine B, Guihur A (2021) Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Frontiers Plant Sci 12:710801

    Article  Google Scholar 

  29. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolwell GP, Bozak K, Zimmerlin A (1994) Plant cytochrome p450. Phytochemistry 37(6):1491–1506. https://doi.org/10.1016/S0031-9422(00)89567-9

    Article  CAS  PubMed  Google Scholar 

  31. Krochko A, Loewen MK (1998) (+)-Abscisic acid 8’-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol Biochem 118(3):849–860. https://doi.org/10.1104/pp.118.3.849

    Article  CAS  Google Scholar 

  32. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134(4):1439–1449. https://doi.org/10.1104/pp.103.037614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress: adaptation mechanisms and their applications. In: Iwaya-Inoue M, Sakurai M, Uemura M (eds) Survival strategies in extreme cold and desiccation. Springer, Berlin

    Google Scholar 

  34. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401. https://doi.org/10.1016/j.tplants.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Feng L, Wei N, Liu Z-H, Hu S, Li X-B (2017) Overexpression of cotton PYL genes in arabidopsis enhances the transgenic plant tolerance to drought stress. Plant Physiol Biochem 115:229–238. https://doi.org/10.1016/j.plaphy.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  36. Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13(1):95–108. https://doi.org/10.1007/BF00027338

    Article  CAS  PubMed  Google Scholar 

  37. Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26(6):1921–1934. https://doi.org/10.1007/BF00019503

    Article  CAS  PubMed  Google Scholar 

  38. Lång V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20(5):951–962. https://doi.org/10.1007/BF00027165

    Article  PubMed  Google Scholar 

  39. Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108(1):39–46. https://doi.org/10.1104/pp.108.1.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shvarts M, Borochov A, Weiss D (1997) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol Plant 99(1):67–72. https://doi.org/10.1111/j.1399-3054.1997.tb03432.x

    Article  CAS  Google Scholar 

  41. Xu F, Cheng SY, Cheng SH, Wang Y, Du HW (2007) Time course of expression of chalcone synthase gene in Ginkgo biloba. J Plant Physiol 33(4):309–317

    CAS  Google Scholar 

  42. Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Márquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60(4):575–588. https://doi.org/10.1111/j.1365-313X.2009.03981.x

    Article  CAS  PubMed  Google Scholar 

  43. Bokma E, Rozeboom HJ, Sibbald M, Dijkstra BW, Beintema JJ (2002) Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. European J Biochem 269(3):893–901. https://doi.org/10.1046/j.0014-2956.2001.02721.x

    Article  CAS  Google Scholar 

  44. Vaghela B, Vashi R, Rajput K, Joshi R (2022) Plant chitinases and their role in plant defense: a comprehensive review. Enzym Microb Technol 159:110055. https://doi.org/10.1016/j.enzmictec.2022.110055

    Article  CAS  Google Scholar 

  45. Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266(3):1564–1573. https://pubmed.ncbi.nlm.nih.gov/1899089/

    Article  CAS  PubMed  Google Scholar 

  46. Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978. https://doi.org/10.1038/srep24978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahdavi Mashaki K, Garg V, Nasrollahnezhad Ghomi AA, Kudapa H, Chitikineni A, Zaynali Nezhad K, Yamchi A, Soltanloo H, Varshney RK, Thudi M (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One. https://doi.org/10.1371/journal.pone.0199774

    Article  PubMed  PubMed Central  Google Scholar 

  48. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) . Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 15;290(5499):2105–10. https://doi.org/10.1126/science.290.5499.2105

  49. Zhao X, Yang X, Pei S, He G, Wang X, Tang Q, Jia C, Lu Y, Hu R, Zhou G (2016) The miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic arabidopsis. Gene 586(1):158–169. https://doi.org/10.1016/j.gene.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  50. Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell and Environent 34(5):738–751. https://doi.org/10.1111/j.1365-3040.2011.02278.x

    Article  CAS  PubMed  Google Scholar 

  51. Yao X, Meng F, Wu L, Guo X, Sun Z, Jiang W, Zhang J, Wu J, Wang S, Wang Z, Su X, Dai X, Qu C, Xing S (2022) Genome-wide identification of R2R3-MYB family genes and gene response to stress in ginger. Plant Genome. https://doi.org/10.1002/tpg2.20258

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Q.F.B. Jesús Héctor Carrillo Yáñez for his technical assistance.

Funding

This work was supported by FOSEC SEPINVESTIGACIÓN BÁSICA, Proyecto No. A1-S-8466. Cátedras CONACYT: Proyecto No. 784. Lightbourn Research. Convenio: 589683, Proyecto: Análisis Transcripcional de Pimiento Morrón (Capsicum annuum L.) bajo estrés abiótico.

Author information

Authors and Affiliations

Authors

Contributions

JLF, BH and LLR, who designed and coordinated the study. JCGO performed the experimental analysis. BEMM, ACM, JLF, MLM, CV and JCGO analyzed the results. Contribution of reagents/materials/analytical tools: RLC, JLF, LLR and BH. CV, MLM and ACM edited the English grammar of the manuscript. All authors drafted, read and approved the manuscript.

Corresponding author

Correspondence to Josefina León-Félix.

Ethics declarations

Conflict of interest

All other authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi-Olivas, J.C., Morales-Merida, B.E., Cruz-Mendívil, A. et al. Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress. Mol Biol Rep 50, 8431–8444 (2023). https://doi.org/10.1007/s11033-023-08744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08744-3

Keywords

Navigation