Skip to main content
Log in

Identification and expression analysis of the SWEET genes in radish reveal their potential functions in reproductive organ development

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Sugars produced by photosynthesis provide energy for biological activities and the skeletons for macromolecules; they also perform multiple physiological functions in plants. Sugar transport across plasma membranes mediated by the Sugar Will Eventually be Exported Transporter (SWEET) genes substantially affects these processes. However, the evolutionary dynamics and function of the SWEET genes are largely unknown in radish, an important Brassicaceae species.

Methods and results

Genome-wide identification and analysis of the RsSWEET genes from the recently updated radish reference genome was conducted using bioinformatics methods. The tissue-specific expression was analyzed using public RNA-seq data, and the expression levels in the bud, stamens, pistils, pericarps and seeds at 15 and 30 days after flowering (DAF) were determined by RT‒qPCR. Thirty-seven RsSWEET genes were identified and named according to their Arabidopsis homologous. They are unevenly distributed across the nine radish chromosomes and were further divided into four clades by phylogenetic analysis. There are 5–7 transmembrane domains and at least one MtN3_slv domain in the RsSWEETs. RNA-seq and RT‒qPCR revealed that the RsSWEETs exhibit higher expression levels in the reproductive organs, indicating that these genes might play vital roles in reproductive organ development. RsSWEET15.1 was found to be especially expressed in siliques according to the RNA-seq data, and the RT‒qPCR results further confirmed that it was most highly expressed levels in the seeds at 30 DAF, followed by the pericarp at 15 DAF, indicating that it is involved in seed growth and development.

Conclusions

This study suggests that the RsSWEET genes play vital roles in reproductive organ development and provides a theoretical basis for the future functional analysis of RsSWEETs in radish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The R. sativus ‘Xin-li-mei’ whole-genome sequence was downloaded from the CNCB database with accession number GWHANWD00000000 (https://ngdc.cncb.ac.cn/gwh/Assembly/9797/show). The RNA-seq reads in different tissues (root, leaf, bolting tissue, flower, silique and callus) of R. sativus are available at the NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra) (PRJNA413464).

References

  1. Walmsley AR, Barrett MP, Bringaud F, Gould GW (1998) Sugar transporters from bacteria, parasites and mammals: structure–activity relationships. Trends Biochem Sci 23(12):476–481

    Article  CAS  PubMed  Google Scholar 

  2. Neuhaus HE (2007) Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett 581(12):2223–2226

    Article  CAS  PubMed  Google Scholar 

  3. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57(1):675–709

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths CA, Paul MJ, Foyer CH (1857) Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. BBA-Bioenergetics 10:1715–1725

    Google Scholar 

  5. Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  6. Buttner M (2010) The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol 12(Suppl 1):35–41

    Article  PubMed  Google Scholar 

  7. Chen LQ (2014) SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201(4):1150–1155

    Article  CAS  PubMed  Google Scholar 

  8. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan M, Wang S (2013) Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6(3):665–674

    Article  CAS  PubMed  Google Scholar 

  10. Filyushin MA, Anisimova OK, Shchennikova AV, Kochieva EZ (2023) Genome-wide identification, expression, and response to Fusarium infection of the SWEET gene family in garlic (Allium sativum L.). Int J Mol Sci 24(8):7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J et al (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics 16:520

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li M, Xie H, He M, Su W, Yang Y, Wang J, Ye G, Zhou Y (2020) Genome-wide identification and expression analysis of the StSWEET family genes in potato (Solanum tuberosum L.). Genes Genom 42(2):135–153

    Article  CAS  Google Scholar 

  13. Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P (2014) The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot 65(22):6589–6601

    Article  CAS  PubMed  Google Scholar 

  14. Xuan C, Lan G, Si F, Zeng Z, Wang C, Yadav V, Wei C, Zhang X (2021) Systematic genome-wide study and expression analysis of sweet gene family: sugar transporter family contributes to biotic and abiotic stimuli in watermelon. Int J Mol Sci 22(16):8407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Li X, Xuan Y, Jiang J, Wei Y, Piao Z (2018) Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci 9:207

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu LP, Zhang F, Song SH, Tang XW, Xu H, Liu GM, Wang Y, He HJ (2017) Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber. J Integr Agr 16(7):1486–1501

    Article  CAS  Google Scholar 

  17. Breia R, Conde A, Badim H, Fortes AM, Geros H, Granell A (2021) Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. Plant Physiol 186(2):836–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ni J, Li J, Zhu R, Zhang M, Qi K, Zhang S, Wu J (2020) Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Gene 743:144582

    Article  CAS  PubMed  Google Scholar 

  19. Seo PJ, Park J-M, Kang SK, Kim S-G, Park C-M (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233(1):189–200

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Zhang Y, Yang C, Tian Z, Li J (2016) AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep 6(1):1–12

    Google Scholar 

  21. Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D (2018) Impaired phloem loading in zmsweet13a, b, c sucrose transporter triple knock-out mutants in Zea mays. New Phytol 218(2):594–603

    Article  CAS  PubMed  Google Scholar 

  22. Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B (2011) Colonization of rice leaf blades by an african strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice Nodulin-3 Os11N3 Gene. Mol Plant Microbe In 24(9):1102–1113

    Article  CAS  Google Scholar 

  23. Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34(11):1958–1969

    Article  CAS  PubMed  Google Scholar 

  24. Jeena GS, Kumar S, Shukla RK (2019) Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Mol Biol 100(4):351–365

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, Zhang C, Han X, Wang ZY, Ma L, Yuan DP, Wu JN, Zhu XF, Liu JM, Li DP et al (2018) Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol 19(9):2149–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40(2):267–278

    Article  CAS  PubMed  Google Scholar 

  27. Le Hir R, Spinner L, Klemens PA, Chakraborti D, de Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8(11):1687–1690

    Article  PubMed  Google Scholar 

  28. Zhang RNK, Ma H (2020) Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses. DNA Cell Biol 39(9):1606–1620

    Article  CAS  PubMed  Google Scholar 

  29. Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7(1):13245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, Hobo T, Hattori M, Yoshimura H, Seo M, Ueguchi-Tanaka M (2020) The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice. Plant Cell Physiol 61(11):1935–1945

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen L-Q, Sui X (2021) Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Plant Physiol 186(1):640–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147(2):852–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo C, Li H, Xia X, Liu X, Yang L (2018) Functional and evolution characterization of SWEET sugar transporters in Ananas comosus. Biochem Bioph Res Co 496(2):407–414

    Article  CAS  Google Scholar 

  34. Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han Y (2018) Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic Res 5(1):1–12

    Article  CAS  Google Scholar 

  35. Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27(3):607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Luo D, Yang B, Frommer WB, Eom JS (2018) SWEET11 and 15 as key players in seed filling in rice. New Phytol 218(2):604–615

    Article  CAS  PubMed  Google Scholar 

  37. Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C (2021) OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. Plant Sci 306:110851

    Article  CAS  PubMed  Google Scholar 

  38. Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS et al (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47(12):1489–1493

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H (2019) The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol 180(4):2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie H, Wang D, Qin Y, Ma A, Fu J, Qin Y, Hu G, Zhao J (2019) Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development. BMC Plant Biol 19(1):1–13

    Article  Google Scholar 

  41. Song J-M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6(1):34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu T, Zhang Y, Zhang X, Sun Y, Wang H, Song J, Li X (2019) Transcriptome analyses reveal key genes involved in skin color changes of ‘Xinlimei’ radish taproot. Plant Physiol Biochem 139:528–539

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, Pang S, Li X, Wang H, Song J et al (2021) Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol Plant 14(12):2032–2055

    Article  CAS  PubMed  Google Scholar 

  44. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS one 5(6):e11335

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  48. Tao Y, Cheung LS, Li S, Eom J-S, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527(7577):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei Y, Xiao D, Zhang C, Hou X (2019) The expanded SWEET gene family following whole genome triplication in Brassica rapa. Genes 10(9):722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen C, Chen H, Zhang Y, Thomas HR, Xia R (2020) TBtools: Zan integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Qiu Y, Wang X, Yue Z, Yang X, Chen X, Zhang X, Shen D, Wang H, Song J et al (2017) Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Sci Rep 7(1):16040

    Article  PubMed  PubMed Central  Google Scholar 

  54. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  55. Gautam T, Saripalli G, Gahlaut V, Kumar A, Sharma P, Balyan H, Gupta P (2019) Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.). Mol Biol Rep 46(2):2327–2353

    Article  CAS  PubMed  Google Scholar 

  56. Manck-Götzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  57. Feng CY, Han JX, Han XX, Jiang J (2015) Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573(2):261–272

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Qin M, Qiao X, Cheng Y, Li X, Zhang H, Wu J (2017) A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant Cell Physiol 58(4):839–850

    Article  CAS  PubMed  Google Scholar 

  59. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Gene Dev 20(10):1250–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (31801858); Research Foundation Incubation Project of Jinling Institute of Technology (jit-fhxm-202113); and Research Foundation for Talented Scholars of Jinling Institute of Technology (jit-b-202009).

Author information

Authors and Affiliations

Authors

Contributions

TL: Methodology, Investigation, Formal analysis, Writing-original draft, review & revision, Software, Funding acquisition. QC: Methodology, Analysis, Validation, Writing-original draft. QB: Investigation. LZ: Resources. YY: Investigation. AZ: Investigation. QW: Daily management. CW: Conceptualization, Investigation, Supervision, Project administration.

Corresponding authors

Correspondence to Tongjin Liu or Changyi Wang.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 99 KB)—Amino acid sequences of the SWEETs from the 7 species used in the present study

11033_2023_8701_MOESM2_ESM.tif

Supplementary file2 (TIF 1778 KB)—Multiple sequence alignment of the SWEET proteins in radish and A. thaliana SWEET1. The seven TM domains were assigned based on the AtSWEET1 structure indicated by Tao et al. (2015)

Supplementary file3 (XLSX 12 KB)—Primers used for RT‒qPCR

Supplementary file4 (XLSX 13 KB)—SWEET genes identified in R. sativus and corresponding physicochemical properties

Supplementary file5 (DOCX 16 KB)—Conserved motifs identified among the radish SWEET proteins

11033_2023_8701_MOESM6_ESM.xlsx

Supplementary file6 (XLSX 12 KB)—The fragments per kilobase of transcript per million mapped reads (FPKM) values of the radish SWEET genes in various organs based on RNA-seq data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Cui, Q., Ban, Q. et al. Identification and expression analysis of the SWEET genes in radish reveal their potential functions in reproductive organ development. Mol Biol Rep 50, 7535–7546 (2023). https://doi.org/10.1007/s11033-023-08701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08701-0

Keywords

Navigation