Skip to main content
Log in

Methylation status, mRNA and protein expression of the SMAD4 gene in patients with non-melanocytic skin cancers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

SMAD4 is a potent tumor suppressor. SMAD4 loss increases genomic instability and plays a critical role in the DNA damage response that leads to skin cancer development. We aimed to investigate SMAD4 methylation effects on mRNA and protein expression of SMAD4 in cancer and healthy tissues from patients with basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and basosquamous skin cancer (BSC).

Methods and results

The study included 17 BCC, 24 cSCC and nine BSC patients. DNA and RNA were isolated from cancerous and healthy tissues following punch biopsy. Methylation-specific polymerase chain reaction (PCR) and real-time quantitative PCR methods were used to examine SMAD4 promoter methylation and SMAD4 mRNA levels, respectively. The percentage and intensity of staining of the SMAD4 protein were determined by immunohistochemistry. The percentage of SMAD4 methylation was increased in the patients with BCC (p = 0.007), cSCC (p = 0.004), and BSC (p = 0.018) compared to the healthy tissue. SMAD4 mRNA expression was decreased in the patients with BCC (p˂0.001), cSCC (p˂0.001), and BSC (p = 0.008). The staining characteristic of SMAD4 protein was negative in the cancer tissues of the patients with cSCC (p = 0.00). Lower SMAD4 mRNA levels were observed in the poorly differentiated cSCC patients (p = 0.001). The staining characteristics of the SMAD4 protein were related to age and chronic sun exposure.

Conclusions

Hypermethylation of SMAD4 and reduced SMAD4 mRNA expression were found to play a role in the pathogenesis of BCC, cSCC, and BSC. A decrease in SMAD4 protein expression level was observed only in cSCC patients. This suggests that epigenetic alterations to the SMAD4 gene are associated with cSCC.

Trial Registration

The name of the trial register: SMAD4 Methylation and Expression Levels in Non-melanocytic Skin Cancers; SMAD4 Protein Positivity.

The registration number: NCT04759261 (https://clinicaltrials.gov/ct2/results?term=NCT04759261).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Ciążyńska M, Kamińska-Winciorek G, Lange D et al (2021) The incidence and clinical analysis of non-melanoma skin cancer. Sci Rep 11:4337. https://doi.org/10.1038/s41598-021-83502-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Zambrano-Román M, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E (2022) Non-melanoma skin cancer: a genetic update and future perspectives. Cancers 14:2371. https://doi.org/10.3390/cancers14102371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiang A, Tan CZ, Kuonen F et al (2019) Genetic mutations underlying phenotypic plasticity in basosquamous carcinoma. J Invest Dermatol 139:2263-2271e5. https://doi.org/10.1016/j.jid.2019.03.1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Volkenstein S, Wohlschlaeger J, Liebau J et al (2010) Basosquamous carcinoma–a rare but aggressive skin malignancy. J Plast Reconstr Aesthet Surg 63:e304–306. https://doi.org/10.1016/j.bjps.2009.05.058

    Article  CAS  PubMed  Google Scholar 

  6. Tarapore E, Atwood SX (2019) Defining the genetics of basosquamous carcinoma. J Invest Dermatol 139:2258–2260. https://doi.org/10.1016/j.jid.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Cives M, Mannavola F, Lospalluti L et al (2020) Non-melanoma skin cancers: biological and clinical features. Int J Mol Sci 21:5394. https://doi.org/10.3390/ijms21155394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calzavara-Pinton P, Ortel B, Venturini M (2015) Non-melanoma skin cancer, sun exposure and sun protection. G Ital Dermatol Venereol 150:369–378

    CAS  PubMed  Google Scholar 

  9. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  10. Pacella G, Capell BC (2021) Epigenetic and metabolic interplay in cutaneous squamous cell carcinoma. Exp Dermatol 30:1115–1125. https://doi.org/10.1111/exd.14354

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou C, Ye M, Ni S et al (2018) DNA methylation biomarkers for head and neck squamous cell carcinoma. Epigenetics 13:398–409. https://doi.org/10.1080/15592294.2018.1465790

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ke Y, Wang XJ (2021) TGFβ signaling in photoaging and UV-Induced skin cancer. J Invest Dermatol 141:1104–1110. https://doi.org/10.1016/j.jid.2020.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao Y, Zhang J, Zhang R, Wan J, Zhang W, Yu B (2012) Examination of Smad2 and Smad4 copy-number variations in skin cancers. Clin Transl Oncol 14:138–142. https://doi.org/10.1007/s12094-012-0773-7

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, He YY (2014) Ultraviolet radiation-induced non-melanoma skin cancer: regulation of DNA damage repair and inflammation. Genes Dis 1:188–198. https://doi.org/10.1016/j.gendis.2014.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao M, Mishra L, Deng CX (2018) The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 14:111–123. https://doi.org/10.7150/ijbs.23230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang L, Mao C, Teng Y et al (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65:8671–8678. https://doi.org/10.1158/0008-5472.Can-05-0800

    Article  CAS  PubMed  Google Scholar 

  17. Cai H, Sobue T, Kitamura T et al (2020) Epidemiology of nonmelanoma skin cancer in Japan: occupational type, lifestyle, and family history of cancer. Cancer Sci 111:4257–4265. https://doi.org/10.1111/cas.14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khalesi M, Whiteman DC, Rosendahl C et al (2015) Basal cell carcinomas on sun-protected vs. sun-exposed body sites: a comparison of phenotypic and environmental risk factors. Photodermatol Photoimmunol Photomed 31:202–211. https://doi.org/10.1111/phpp.12170

    Article  PubMed  Google Scholar 

  19. Reiter O, Mimouni I, Dusza S, Halpern AC, Leshem YA, Marghoob AA (2021) Dermoscopic features of basal cell carcinoma and its subtypes: a systematic review. J Am Acad Dermatol 85:653–664. https://doi.org/10.1016/j.jaad.2019.11.008

    Article  PubMed  Google Scholar 

  20. Sgouros D, Theofili M, Damaskou V et al (2021) Dermoscopy as a tool in differentiating cutaneous squamous cell carcinoma from its variants. Dermatol Pract Concept 11:e2021050. https://doi.org/10.5826/dpc.1102a50

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gambichler T, Skrygan M, Kaczmarczyk JM et al (2007) Increased expression of TGF-beta/Smad proteins in basal cell carcinoma. Eur J Med Res 12:509–514

    CAS  PubMed  Google Scholar 

  22. Ozkan U, Ozcelik F, Yildiz M, Budak M (2019) Lipoprotein(a) gene polymorphism increases a risk factor for aortic valve calcification. J Cardiovasc Dev Dis 6:31. https://doi.org/10.3390/jcdd6030031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao T, Nie Y, Guo J (2012) Hypermethylation of the gene LARP2 for noninvasive prenatal diagnosis of β-thalassemia based on DNA methylation profile. Mol Biol Rep 39:6591–6598. https://doi.org/10.1007/s11033-012-1489-z

    Article  CAS  PubMed  Google Scholar 

  24. Guo W, Dong Z, Guo Y, Kuang G, Yang Z, Shan B (2012) Concordant repression and aberrant methylation of transforming growth factor-beta signaling pathway genes occurs early in gastric cardia adenocarcinoma. Mol Biol Rep 39:9453–9462. https://doi.org/10.1007/s11033-012-1810-x

    Article  CAS  PubMed  Google Scholar 

  25. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427

    Article  CAS  PubMed  Google Scholar 

  26. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85

    PubMed  PubMed Central  Google Scholar 

  27. Lin Z, Zhang L, Zhou J, Zheng J (2019) Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelialmesenchymal transition. Mol Med Rep 20:3735–3745. https://doi.org/10.3892/mmr.2019.10597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xavier-Junior JCC, Ocanha-Xavier JP (2019) WHO,(2018) Classification of Skin Tumors. Am J Dermatopathol 41:699–700. https://doi.org/10.1097/dad.0000000000001446

    Article  Google Scholar 

  29. Woo WA, Suarez MFB, Keohane SG (2021) Summary of the updated 2020 guidelines for cutaneous squamous cell carcinoma. Clin Exp Dermatol 46:1174–1177. https://doi.org/10.1111/ced.14587

    Article  CAS  PubMed  Google Scholar 

  30. He SM, Zhao ZW, Wang Y et al (2011) Reduced expression of SMAD4 in gliomas correlates with progression and survival of patients. J Exp Clin Cancer Res 30:70. https://doi.org/10.1186/1756-9966-30-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernandez AL, Young CD, Wang JH, Wang XJ (2019) Lessons learned from SMAD4 loss in squamous cell carcinomas. Mol Carcinog 58:1648–1655. https://doi.org/10.1002/mc.23049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bellizzi AM (2020) An algorithmic immunohistochemical approach to define tumor type and assign site of origin. Adv Anat Pathol 27:114–163. https://doi.org/10.1097/pap.0000000000000256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoot KE, Lighthall J, Han G et al (2008) Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 118:2722–2732. https://doi.org/10.1172/jci33713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitra D, Fernandez P, Bian L et al (2013) Smad4 loss in mouse keratinocytes leads to increased susceptibility to UV carcinogenesis with reduced Ercc1-mediated DNA repair. J Invest Dermatol 133:2609–2616. https://doi.org/10.1038/jid.2013.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatziapostolou M, Iliopoulos D (2011) Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68:1681–1702. https://doi.org/10.1007/s00018-010-0624-z

    Article  CAS  PubMed  Google Scholar 

  36. Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A (2021) Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol 19:54. https://doi.org/10.1186/s43141-021-00154-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yan W, Wistuba II, Emmert-Buck MR, Erickson HS (2011) Squamous cell carcinoma—similarities and differences among anatomical sites. Am J Cancer Res 1:275–300

    PubMed  Google Scholar 

  38. Wu F, Weigel KJ, Zhou H, Wang XJ (2018) Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 50:98–105. https://doi.org/10.1093/abbs/gmx127

    Article  CAS  PubMed  Google Scholar 

  39. Bornstein S, White R, Malkoski S et al (2009) Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119:3408–3419. https://doi.org/10.1172/jci38854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franzen A, Bootz F, Dietrich D (2020) Prognostic and predictive methylation biomarkers in HNSCC: Epigenomic diagnostics for head and neck squamous cell carcinoma (HNSCC). HNO 68:911–915. https://doi.org/10.1007/s00106-020-00902-4

    Article  CAS  PubMed  Google Scholar 

  41. Nikolouzakis TK, Falzone L, Lasithiotakis K et al (2020) Current and future trends in molecular biomarkers for diagnostic, prognostic, and predictive purposes in non-melanoma skin cancer. J Clin Med 9:2868. https://doi.org/10.3390/jcm9092868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin LH, Chang KW, Cheng HW, Liu CJ (2019) SMAD4 somatic mutations in head and neck carcinoma are associated with tumor progression. Front Oncol 9:1379. https://doi.org/10.3389/fonc.2019.01379

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hervás-Marín D, Higgins F, Sanmartín O et al (2019) Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma. PLoS ONE 14:e0223341. https://doi.org/10.1371/journal.pone.0223341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heitzer E, Bambach I, Dandachi N, Horn M, Wolf P (2010) PTCH promoter methylation at low level in sporadic basal cell carcinoma analysed by three different approaches. Exp Dermatol 19:926–928. https://doi.org/10.1111/j.1600-0625.2010.01120.x

    Article  CAS  PubMed  Google Scholar 

  45. Brinkhuizen T, van den Hurk K, Winnepenninckx VJ et al (2012) Epigenetic changes in basal cell carcinoma affect SHH and WNT signaling components. PLoS ONE 7:e51710. https://doi.org/10.1371/journal.pone.0051710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217. https://doi.org/10.1038/sj.onc.1209029

    Article  CAS  PubMed  Google Scholar 

  47. Lange D, Persson U, Wollina U et al (1999) Expression of TGF-beta related smad proteins in human epithelial skin tumors. Int J Oncol 14:1049–1056. https://doi.org/10.3892/ijo.14.6.1049

    Article  CAS  PubMed  Google Scholar 

  48. Pietkiewicz P, Gornowicz-Porowska J, Bowszyc-Dmochowska M et al (2014) Discordant expression of desmoglein 2 and 3 at the mRNA and protein levels in nodular and superficial basal cell carcinoma revealed by immunohistochemistry and fluorescent in situ hybridization. Clin Exp Dermatol 39:628–635. https://doi.org/10.1111/ced.12355

    Article  CAS  PubMed  Google Scholar 

  49. Li JJ, Biggin MD (2015) Gene expression. Statistics requantitates the central dogma. Science 347:1066–1067. https://doi.org/10.1126/science.aaa8332

    Article  CAS  PubMed  Google Scholar 

  50. Fortelny N, Overall CM, Pavlidis P, Freue GVC (2017) Can we predict protein from mRNA levels? Nature 547:E19–E20. https://doi.org/10.1038/nature22293

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Trakya University Research Project Fund (2020/55).

Author information

Authors and Affiliations

Authors

Contributions

YGÜ and MB designed the research study. MB and EUK performed the research. YGÜ and MB carried out the data analysis and writing—review and editing. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Yıldız Gürsel Ürün.

Ethics declarations

Competing interests

The authors agree that there are no conflicts of interest to declare.

Ethical approval

Approval for the study was granted by the Scientific Research Ethics Committee of the Trakya University Faculty of Medicine (approval number: 18/14, date: 06/11/2019).

Informed consent

All the subjects who agreed to participate in the study gave their written informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürsel Ürün, Y., Budak, M. & Usturalı Keskin, E. Methylation status, mRNA and protein expression of the SMAD4 gene in patients with non-melanocytic skin cancers. Mol Biol Rep 50, 7295–7304 (2023). https://doi.org/10.1007/s11033-023-08656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08656-2

Keywords

Navigation