Skip to main content
Log in

hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Dysregulated apoptosis of penile mesenchymal cells during male urethragenesis has been previously demonstrated to underly hypospadiac urethral closure failure, and androgen receptor (AR) has been shown to play a central role in regulating penile mesenchyme cell proliferation and survival. However, the regulatory mechanisms upstream and downstream of AR remain poorly understood. Our clinical data and bioinformatics analysis previously indicated that hsa_circ_0000417, a circRNA significantly downregulated in hypospadias preputial specimens, may act as a ceRNA for AR via sequestering hsa_miR-6756-5p, and that the biological functions of hsa_circ_0000417 may significantly involve the PI3K/AKT pathway. In this study, we employed human foreskin fibroblasts (HFF-1) to experimentally validate this putative hsa_circ_0000417/miR-6756-5p/AR axis and its impact on penile mesenchymal cell proliferation and apoptosis.

Method and results

We showed that hsa_circ_0000417 knockdown significantly promoted proliferation and suppressed apoptosis of HFF-1 cells. Mechanistically, hsa_circ_0000417 functioned as a molecular sponge for miR-6756-5p in HFF-1 cells and relieved the latter’s translational repression on AR mRNA, leading to decreased AKT activation and increased expression of pro-apoptotic proteins BAX and cleaved-caspase 9. Conversely, elevated levels of miR-6756-5p resulted in diminished AR expression concomitant with enhanced AKT activation and HFF-1 cell proliferation.

Conclusions

Collectively, our data describe for the first time a circRNA-mediated post-transcriptional regulatory mechanism of AR and its functional consequences in penile mesenchymal cells in the context of hypospadias. These findings may contribute to advancing our current understanding of the roles of AR and mesenchymal cell fate decisions during penile morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Blaschko SD, Cunha GR, Baskin LS (2012) Molecular mechanisms of external genitalia development. Differentiation 84(3):261–268. https://doi.org/10.1016/j.diff.2012.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH (2015) The genetic and environmental factors underlying hypospadias. Sex Dev 9(5):239–259. https://doi.org/10.1159/000441988

    Article  PubMed  Google Scholar 

  3. Seifert AW, Harfe BD, Cohn MJ (2008) Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev Biol 318(1):143–152. https://doi.org/10.1016/j.ydbio.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinclair AW, Cao M, Pask A, Baskin L, Cunha GR (2017) Flutamide-induced hypospadias in rats: a critical assessment. Differentiation 94:37–57. https://doi.org/10.1016/j.diff.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Liu G, Shen J, Yue A, Isaacson D, Sinclair A, Cao M, Liaw A, Cunha GR, Baskin L (2018) Human glans and preputial development. Differentiation 103:86–99. https://doi.org/10.1016/j.diff.2018.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cunha GR, Sinclair A, Cao M, Baskin LS (2020) Development of the human prepuce and its innervation. Differentiation 111:22–40. https://doi.org/10.1016/j.diff.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Baskin LS, Erol A, Jegatheesan P, Li Y, Liu W, Cunha GR (2001) Urethral seam formation and hypospadias. Cell Tissue Res 305(3):379–387. https://doi.org/10.1007/s004410000345

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki H, Matsushita S, Suzuki K, Yamada G (2017) 5α-dihydrotestosterone negatively regulates cell proliferation of the periurethral ventral mesenchyme during urethral tube formation in the murine male genital tubercle. Andrology 5(1):146–152. https://doi.org/10.1111/andr.12241

    Article  CAS  PubMed  Google Scholar 

  9. Miyagawa S, Satoh Y, Haraguchi R, Suzuki K, Iguchi T, Taketo MM, Nakagata N, Matsumoto T, Takeyama K, Kato S, Yamada G (2009) Genetic interactions of the androgen and Wnt/beta-catenin pathways for the masculinization of external genitalia. Mol Endocrinol 23(6):871–880. https://doi.org/10.1210/me.2008-0478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng Z, Armfield BA, Cohn MJ (2015) Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies. Proc Natl Acad Sci 112(52):E7194-7203. https://doi.org/10.1073/pnas.1515981112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hyuga T, Suzuki K, Acebedo AR, Hashimoto D, Kajimoto M, Miyagawa S, Enmi JI, Yoshioka Y, Yamada G (2019) Regulatory roles of epithelial-mesenchymal interaction (EMI) during early and androgen dependent external genitalia development. Differentiation 110:29–35. https://doi.org/10.1016/j.diff.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Matsushita S, Suzuki K, Murashima A, Kajioka D, Acebedo AR, Miyagawa S, Haraguchi R, Ogino Y, Yamada G (2018) Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 15(6):358–368. https://doi.org/10.1038/s41585-018-0008-y

    Article  CAS  PubMed  Google Scholar 

  13. Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011:329098. https://doi.org/10.4061/2011/329098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu W, Nelson CM (2012) PI3K signaling in the regulation of branching morphogenesis. Bio Syst 109(3):403–411. https://doi.org/10.1016/j.biosystems.2012.04.004

    Article  CAS  Google Scholar 

  15. Yu JS, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143(17):3050–3060. https://doi.org/10.1242/dev.137075

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh S, Lau H, Simons BW, Powell JD, Meyers DJ, De Marzo AM, Berman DM, Lotan TL (2011) PI3K/mTOR signaling regulates prostatic branching morphogenesis. Dev Biol 360(2):329–342. https://doi.org/10.1016/j.ydbio.2011.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujino A, Arango NA, Zhan Y, Manganaro TF, Li X, MacLaughlin DT, Donahoe PK (2009) Cell migration and activated PI3K/AKT-directed elongation in the developing rat mullerian duct. Dev Biol 325(2):351–362. https://doi.org/10.1016/j.ydbio.2008.10.027

    Article  CAS  PubMed  Google Scholar 

  18. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19(5):575–586. https://doi.org/10.1016/j.ccr.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, Kim S, Thaper D, Gleave ME, Zoubeidi A (2013) Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 12(11):2342–2355. https://doi.org/10.1158/1535-7163.MCT-13-0032

    Article  CAS  PubMed  Google Scholar 

  20. Marques RB, Aghai A, de Ridder CMA, Stuurman D, Hoeben S, Boer A, Ellston RP, Barry ST, Davies BR, Trapman J, van Weerden WM (2015) High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur Urol 67(6):1177–1185. https://doi.org/10.1016/j.eururo.2014.08.053

    Article  CAS  PubMed  Google Scholar 

  21. Kahn B, Collazo J, Kyprianou N (2014) Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 10(6):588–595. https://doi.org/10.7150/ijbs.8671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin Z, Tang X, Wan J, Zhang X, Liu C, Liu T (2021) Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol 18(12):2136–2149. https://doi.org/10.1080/15476286.2021.1913551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Timoteo G, Rossi F, Bozzoni I (2020) Circular RNAs in cell differentiation and development. Development. https://doi.org/10.1242/dev.182725

    Article  PubMed  Google Scholar 

  24. Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206. https://doi.org/10.1038/s41571-021-00585-y

    Article  CAS  PubMed  Google Scholar 

  25. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388. https://doi.org/10.1080/15476286.2015.1020271

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ho JJD, Man JHS, Schatz JH, Marsden PA (2021) Translational remodeling by RNA-binding proteins and noncoding RNAs. Wiley Interdiscip Rev RNA 12(5):e1647. https://doi.org/10.1002/wrna.1647

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71(3):428–442. https://doi.org/10.1016/j.molcel.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  28. Chao C, Jian YY, Zhao XY, Liu YL, Xie QK (2020) The involvement of hsa_circ_0000417 in the development of hypospadias by regulating AR. Differ Res Biol Divers 116:9–15. https://doi.org/10.1016/j.diff.2020.09.003

    Article  CAS  Google Scholar 

  29. Vottero A, Minari R, Viani I, Tassi F, Bonatti F, Neri TM, Bertolini L, Bernasconi S, Ghizzoni L (2011) Evidence for epigenetic abnormalities of the androgen receptor gene in foreskin from children with hypospadias. J Clin Endocrinol Metab 96(12):E1953–1962. https://doi.org/10.1210/jc.2011-0511

    Article  CAS  PubMed  Google Scholar 

  30. Svensson J, Snochowski M (1979) Androgen receptor levels in preputial skin from boys with hypospadias. J Clin Endocrinol Metab 49(3):340–345. https://doi.org/10.1210/jcem-49-3-340

    Article  CAS  PubMed  Google Scholar 

  31. An Y, Liu X, Tang Y, Liu J, Li J, Luo Y, Qiu M (2012) Expression of androgen receptor in genital tissue of patients with congenital hypospadias and simple chordee. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26(4):461–465

    CAS  PubMed  Google Scholar 

  32. Silva TS, Richeti F, Cunha DP, Amarante AC, de Souza Leao JQ, Longui CA (2013) Androgen receptor mRNA measured by quantitative real time PCR is decreased in the urethral mucosa of patients with middle idiopathic hypospadias. Horm Metabol Res 45(7):495–500. https://doi.org/10.1055/s-0033-1333717

    Article  CAS  Google Scholar 

  33. Chen Z, Lin X, Wang Y, Xie H, Chen F (2020) Dysregulated expression of androgen metabolism genes and genetic analysis in hypospadias. Mol Genet Genom Med 8(8):e1346. https://doi.org/10.1002/mgg3.1346

    Article  CAS  Google Scholar 

  34. Tai C, Xie Z, Li Y, Feng Y, Xie Y, Yang H, Wang L, Wang B (2022) Human skin dermis-derived fibroblasts are a kind of functional mesenchymal stromal cells: judgements from surface markers, biological characteristics, to therapeutic efficacy. Cell Biosci 12(1):105. https://doi.org/10.1186/s13578-022-00842-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morgan EA, Nguyen SB, Scott V, Stadler HS (2003) Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia. Development 130(14):3095–3109. https://doi.org/10.1242/dev.00530

    Article  CAS  PubMed  Google Scholar 

  36. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524. https://doi.org/10.1101/gad.1399806

    Article  CAS  PubMed  Google Scholar 

  37. Karabulut R, Turkyilmaz Z, Sonmez K, Kumas G, Ergun S, Ergun M, Basaklar A (2013) Twenty-four genes are upregulated in patients with Hypospadias. Balkan J Med Genet 16(2):39–44. https://doi.org/10.2478/bjmg-2013-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pineyro-Ruiz C, Serrano H, Jorge I, Miranda-Valentin E, Perez-Brayfield MR, Camafeita E, Mesa R, Vazquez J, Jorge JC (2020) A Proteomics signature of mild hypospadias: a pilot study. Front Pediatr 8:586287. https://doi.org/10.3389/fped.2020.586287

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Rossum D, Verheijen BM, Pasterkamp RJ (2016) Circular RNAs: Novel regulators of neuronal development. Front Mol Neurosci 9:74. https://doi.org/10.3389/fnmol.2016.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahmoudi E, Cairns MJ (2019) Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Sci Rep 9(1):2564. https://doi.org/10.1038/s41598-019-38860-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong L, Gu T, He Y, Zhou C, Hu Q, Wang X, Zheng E, Huang S, Xu Z, Yang J, Yang H, Li Z, Liu D, Cai G, Wu Z (2019) Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development. Front Cell Dev Biol 7:289. https://doi.org/10.3389/fcell.2019.00289

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baskin L, Shen J, Sinclair A, Cao M, Liu X, Liu G, Isaacson D, Overland M, Li Y, Cunha GR (2018) Development of the human penis and clitoris. Differentiation 103:74–85. https://doi.org/10.1016/j.diff.2018.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, Cunha GR (2020) Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation 111:41–59. https://doi.org/10.1016/j.diff.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  44. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316. https://doi.org/10.1016/j.tig.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patop IL, Wust S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836. https://doi.org/10.15252/embj.2018100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14(8):1028–1034. https://doi.org/10.1080/15476286.2016.1255398

    Article  PubMed  Google Scholar 

  47. Kong X, Luo J, Xiang H, Wang S, Shen L, Long C, Liu F, Lin T, He D, Liu X, Wei GH (2021) Expression of Mafb is down-regulated in the foreskin of children with hypospadias. J Pediatr Urol 17(1):70e71–70e76. https://doi.org/10.1016/j.jpurol.2020.10.006

    Article  Google Scholar 

  48. Kong X, Liu Z, Long C, Shen L, Liu X, Wei G (2022) Repression of Mafb promotes foreskin fibroblast proliferation through upregulation of CDK2, cyclin E and PCNA. Andrologia 54(6):e14411. https://doi.org/10.1111/and.14411

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82060129), the “Medical Excellence Award” funded by the Creative Research Development Grant from the First Affiliated Hospital of Guangxi Medical University (2017026), 2018 Guangxi Scholarship Fund of Guangxi Education Department and Key Research and Development Program of Guangxi Province (GuiKe.AB18221028).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data curation, investigation, data analysis, visualization: JH, CS, XZ, CC, PL. Software, statistical analysis: YL, QX. Manuscript writing and editing: PL, JH. Supervision: CC.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Su, C., Lu, P. et al. hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p. Mol Biol Rep 50, 6769–6781 (2023). https://doi.org/10.1007/s11033-023-08628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08628-6

Keywords

Navigation