Skip to main content

Advertisement

Log in

Immunomodulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-triggered inflammation in gastric epithelial cells in vitro

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Helicobacter pylori infection is considered as the major risk factor for gastric adenocarcinoma. Today, the increasing emergence of antibiotic-resistant strains has drastically decreased the eradication rate of H. pylori infection. This study was aimed to investigate the inhibitory and modulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on H. pylori adhesion, invasion, and inflammatory response in AGS cell line.

Methods and results

The probiotic potential and properties of L. crispatus were evaluated using several functional and safety tests. Cell viability of AGS cells exposed to varying concentrations of live and pasteurized L. crispatus was assessed by MTT assay. The adhesion and invasion abilities of H. pylori exposed to either live or pasteurized L. crispatus were examined by gentamycin protection assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR from coinfected AGS cells. ELISA was used for the detection of IL-8 secretion from treated cells. Both live and pasteurized L. crispatus significantly decreased H. pylori adhesion/invasion to AGS cells. In addition, both live and pasteurized L. crispatus modulated H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α and upregulating the expression of IL-10, and TGF-ß cytokines in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with live and pasteurized L. crispatus.

Conclusions

In conclusion, our findings demonstrated that live and pasteurized L. crispatus strain RIGLD-1 are safe, and could be suggested as a potential probiotic candidate against H. pylori colonization and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Charitos IA, D’Agostino D, Topi S, Bottalico L (2021) 40 years of Helicobacter pylori: a revolution in biomedical thought. Gastroenterol Insights 12(2):111–135. https://doi.org/10.3390/gastroent12020011

    Article  Google Scholar 

  2. Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A et al (2022) The interplay between Helicobacter pylori and the gut microbiota: an emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 1177. https://doi.org/10.3389/fcimb.2022.953718

  3. Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D et al (2020) Helicobacter pylori virulence factors—mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10(1):27. https://doi.org/10.3390/cells10010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atrisco-Morales J, Ramírez M, Castañón-Sánchez CA, Román-Román A, Román-Fernández IV, Martínez-Carrillo DN et al (2022) In peripheral blood mononuclear cells Helicobacter pylori induces the secretion of Soluble and Exosomal Cytokines related to carcinogenesis. Int J Mol Sci 23(15):8801. https://doi.org/10.3390/ijms23158801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chongruksut W, Limpakan S, Chakrabandhu B, Ruengorn C, Nanta S (2016) Correlation of Helicobacter pylori and interleukin-8 mRNA expression in high risk gastric cancer population prediction. World J Gastrointest Oncol 8(2):215. https://doi.org/10.4251/wjgo.v8.i2.215

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wasielica-Berger J, Gugnacki P, Mlynarczyk M, Rogalski P, Swidnicka-Siergiejko A, Antonowicz S et al (2022) Comparative effectiveness of various eradication regimens for Helicobacter pylori infection in the northeastern region of Poland. Int J Environ Res Public Health 19(11):6921. https://doi.org/10.3390/ijerph19116921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki S, Gotoda T, Kusano C, Ikehara H, Ichijima R, Ohyauchi M et al (2020) Seven-day vonoprazan and low-dose amoxicillin dual therapy as first-line Helicobacter pylori treatment: a multicentre randomised trial in Japan. Gut 69(6):1019–1026. https://doi.org/10.1136/gutjnl-2019-319954

    Article  CAS  PubMed  Google Scholar 

  8. Farzi N, Yadegar A, Sadeghi A, Asadzadeh Aghdaei H, Marian Smith S, Raymond J et al (2019) High prevalence of antibiotic resistance in iranian Helicobacter pylori isolates: importance of functional and mutational analysis of resistance genes and virulence genotyping. JCM 8(11):2004. https://doi.org/10.3390/jcm8112004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli L et al (2002) Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol 97(11):2744–2749. https://doi.org/10.1111/j.1572-0241.2002.07063.x

    Article  PubMed  Google Scholar 

  10. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME et al (2020) Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Fron Microbiol 1662. https://doi.org/10.3389/fmicb.2020.01662

  11. Das TK, Pradhan S, Chakrabarti S, Mondal KC, Ghosh K (2022) Current status of probiotic and related health benefits. Appl Food Biotechnol 100185. https://doi.org/10.1016/j.afres.2022.100185

  12. Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A et al (2021) The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver Injury. Microbiol Spectr 9(2):e00484–e00421. https://doi.org/10.1128/Spectrum.00484-21

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin C-C, Huang W-C, Su C-H, Lin W-D, Wu W-T, Yu B et al (2020) Effects of multi-strain probiotics on immune responses and metabolic balance in Helicobacter pylori-infected mice. Nutrients 12(8):2476. https://doi.org/10.3390/nu12082476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keikha M, Karbalaei M (2021) Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 21(1):1–18. https://doi.org/10.1186/s12876-021-01977-1

    Article  CAS  Google Scholar 

  15. Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z et al (2021) Probiotic gastrointestinal transit and colonization after oral administration: a long journey. Front Cell Infect Microbiol 11:609722. https://doi.org/10.3389/fcimb.2021.609722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li T, Liu Z, Zhang X, Chen X, Wang S (2019) Local probiotic Lactobacillus crispatus and Lactobacillus delbrueckii exhibit strong antifungal effects against Vulvovaginal candidiasis in a rat model. Front Microbiol 10:1033

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yao-Jong Y, Ching-Chun C, Hsiao-Bai Y, Cheng-Chan L, Bor-Shyang S (2012) Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol. https://doi.org/10.1186/1471-2180-12-38

    Article  Google Scholar 

  18. Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R (2020) Comparative analysis of Lactobacillus gasseri and Lactobacillus crispatus isolated from human urogenital and gastrointestinal tracts. Front Microbiol 10:3146. https://doi.org/10.3389/fmicb.2019.03146

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yarmohammadi M, Yadegar A, Ebrahimi MT, Zali MR (2021) Effects of a potential probiotic strain Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-induced inflammatory response and gene expression in coinfected gastric epithelial cells. Probiotics Antimicrob Proteins 13(3):751–764. https://doi.org/10.1007/s12602-020-09721-z

    Article  CAS  PubMed  Google Scholar 

  20. Salas-Jara M, Sanhueza E, Retamal-Díaz A, González C, Urrutia H, García A (2016) Probiotic Lactobacillus fermentum UCO-979 C biofilm formation on AGS and Caco-2 cells and Helicobacter pylori inhibition. Biofouling 32(10):1245–1257. https://doi.org/10.1080/08927014.2016.1249367

    Article  CAS  PubMed  Google Scholar 

  21. Wayne P (2020) Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 30th informational supplement. CLSI document M100

  22. Mousavi E, Makvandi M, Teimoori A, Ataei A, Ghafari S, Samarbaf-Zadeh A (2018) Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J Chin Med Assoc 81(3):262–267. https://doi.org/10.1016/j.jcma.2017.07.010

    Article  PubMed  Google Scholar 

  23. Chen Y-H, Tsai W-H, Wu H-Y, Chen C-Y, Yeh W-L, Chen Y-H et al (2019) Probiotic Lactobacillus spp. act against Helicobacter pylori-induced inflammation. J Clin Med 8(1):90. https://doi.org/10.3390/jcm8010090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan X, Zhang Y, Chen H, Dong L, Wu B, Xu T, Hu J, Liu Z, Wang W, Wu L, Feng Z (2017) Inhibition of epidermal growth factor receptor attenuates LPS-induced inflammation and acute lung injury in rats. Oncotarget 4(16):26648. https://doi.org/10.4049/jimmunol.1501177

    Article  CAS  Google Scholar 

  25. González-Domínguez É, Domínguez-Soto Á, Nieto C, Flores-Sevilla JL, Pacheco-Blanco M, Campos-Peña V, Meraz-Ríos MA, Vega MA, Corbí ÁL, Sánchez-Torres C (2016) Atypical activin A and IL-10 production impairs human CD16 + monocyte differentiation into anti-inflammatory macrophages. J Immunol 1327–1337. https://doi.org/10.4049/jimmunol.1501177

  26. Keshavarz Azizi Raftar S, Abdollahiyan S, Azimirad M, Yadegar A, Vaziri F, Moshiri A, Siadat SD, Zali MR (2021) The anti-fibrotic effects of heat-killed Akkermansia muciniphila MucT on liver fibrosis markers and activation of hepatic stellate cells. Probiotic Antimicrob Proteins 776–787. https://doi.org/10.1007/s12602-020-09733-9

  27. Chiang T-H, Chang W-J, Chen SL-S, Yen AM-F, Fann JC-Y, Chiu SY-H et al (2021) Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 70(2):243–250. https://doi.org/10.1136/gutjnl-2020-322200

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y-J, Chuang C-C, Yang H-B, Lu C-C, Sheu B-S (2012) Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol 12(1):1–8. https://doi.org/10.1186/1471-2180-12-38

    Article  CAS  Google Scholar 

  29. Ji J, Yang H (2020) Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. Int J Mol Sci 21(3):1136. https://doi.org/10.3390/ijms21031136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, et a (2004) In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl Environ Microbiol 70(1):518–526. https://doi.org/10.1128/AEM.70.1.518-526.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raheem A, Liang L, Zhang G, Cui S (2021) Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front Immunol 12:616713. https://doi.org/10.3389/fimmu.2021.616713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liévin-Le Moal V, Servin AL (2014) Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol rev 27(2):167–199. https://doi.org/10.1128/CMR.00080-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaur H, Kaur G, Ali SA (2022) Dairy-based probiotic-fermented Functional Foods: an update on their health-promoting Properties. Fermentation 8(9):425. https://doi.org/10.3390/fermentation8090425

    Article  CAS  Google Scholar 

  34. Barros CP, Guimaraes JT, Esmerino EA, Duarte MCK, Silva MC, Silva R et al (2020) Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci 32:1–8. https://doi.org/10.1016/j.cofs.2019.12.003

    Article  Google Scholar 

  35. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M (2009) Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus and/or L. iners are more conductive to the occurrence of abnormal vaginal microflora. BMC Microbiol 9:116. https://doi.org/10.1186/1471-2180-9-116

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Zhang M, Yu L, Tian F, Lu W, Wang G et al (2022) Evaluation of the Potential Protective Effects of Lactobacillus Strains against Helicobacter pylori Infection: A Randomized, Double-Blinded, Placebo-Controlled Trial. Can J Infect Dis Med Microbiol 2022. https://doi.org/10.1155/2022/6432750

  37. Wang N, Mao F-y, Huang W-w, Kong H, Shi Y, Yang Z-b et al (2019) Resistant gastric environment of Lactobacillus crispatus from stomach inhibits Helicobacter pylori colonization and attenuates gastric inflammation. Res Sq. https://doi.org/10.21203/rs.2.9712/v1

    Article  Google Scholar 

  38. Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8(12):993–1002. https://doi.org/10.1016/S0958-6946(99)00024-240

    Article  Google Scholar 

  39. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Klerk N, Maudsdotter L, Gebreegziabher H, Saroj SD, Eriksson B, Eriksson OS et al (2016) Lactobacilli reduce Helicobacter pylori attachment to host gastric epithelial cells by inhibiting adhesion gene expression. Infect Immun 84(5):1526–1535. https://doi.org/10.1128/IAI.00163-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jan I, Rather RA, Mushtaq I, Malik AA, Besina S, Baba AB et al (2021) Helicobacter pylori subdues Cytokine Signaling to alter mucosal inflammation via hypermethylation of suppressor of Cytokine Signaling 1 gene during gastric carcinogenesis. Front oncol 10:604747. https://doi.org/10.3389/fonc.2020.604747

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamada S, Kato S, Matsuhisa T, Makonkawkeyoon L, Yoshida M, Chakrabandhu T et al (2013) Predominant mucosal IL-8 mRNA expression in non-caga Thais is risk for gastric cancer. World J Gastroenterol 19(19):2941–2949. https://doi.org/10.3748/wjg.v19.i19.2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song H, Zhou L, Liu D, Ge L, Li Y (2019) Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells. Exp Ther Med 18(3):1551–1562. https://doi.org/10.3892/etm.2019.7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. García A, Navarro K, Sanhueza E, Pineda S, Pastene E, Quezada M et al (2017) Characterization of Lactobacillus fermentum UCO-979 C, a probiotic strain with a potent anti-Helicobacter pylori activity. Electron J Biotechnol 25:75–83. https://doi.org/10.1016/j.ejbt.2016.11.008

    Article  Google Scholar 

  45. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R (2021) Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol 12:178. https://doi.org/10.3389/fimmu.2021.578386

    Article  CAS  Google Scholar 

  46. Shi M, Yue Y, Ma C, Dong L, Chen F (2022) Pasteurized Akkermansia muciniphila ameliorate the LPS-Induced Intestinal Barrier Dysfunction via modulating AMPK and NF-κB through TLR2 in Caco-2 cells. Nutrients 14(4):764. https://doi.org/10.3390/nu14040764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gotteland M, Brunser O, Cruchet S (2006) Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol ther 23(8):1077–1086. https://doi.org/10.1111/j.1365-2036.2006.02868.x

    Article  CAS  PubMed  Google Scholar 

  48. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23(1):107–113. https://doi.org/10.1038/nm.4236

    Article  CAS  PubMed  Google Scholar 

  49. Feng C, Zhang W, Zhang T, Li B, He Q, Kwok L-Y et al (2022) Oral administration of pasteurized probiotic fermented milk alleviates dextran sulfate sodium-induced inflammatory bowel disease in rats. J Funct Foods 94:105140. https://doi.org/10.1016/j.jff.2022.105140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank laboratory staff of the Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also are grateful to the staff of the Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

Funding

The study was funded by a research grant (Project No: RIGLD 1128) from the Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

FF performed microbiological experiments, cell culture, RT-qPCR, data analysis, and wrote the manuscript draft; AY designed the study, participated in data analysis, conceptualization, writing and editing, and project administration; AY, AS, FP and NS critically revised the manuscript. All authors read the final version of the manuscript and approved the list of authors.

Corresponding authors

Correspondence to Neda Soleimani or Abbas Yadegar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This work does not contain any studies related with human participants or animals. The study was approved by the Institutional Ethical Review Committee of the Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Project No. IR.SBMU.RIGLD.REC.1399.046).

Consent for participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharian, F., Sadeghi, A., Pouresmaeili, F. et al. Immunomodulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-triggered inflammation in gastric epithelial cells in vitro. Mol Biol Rep 50, 6795–6805 (2023). https://doi.org/10.1007/s11033-023-08596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08596-x

Keywords

Navigation