Skip to main content

Advertisement

Log in

GGA (geranylgeranylacetone) ameliorates bleomycin-induced lung inflammation and pulmonary fibrosis by inhibiting apoptosis and oxidative stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Fibrosis is a response to ongoing cellular injury, disruption, and tissue remodeling, the pathogenesis of which is unknown, and is characterized by extracellular matrix deposition. The antifibrotic effect of Geranylgeranylacetone (GGA), as an inducer of Heat shock protein 70 (HSP70), in liver, kidney and pulmonary fibrosis has been supported by multiple preclinical evidence. However, despite advances in our understanding, the precise roles of HSP70 in fibrosis require further investigation. The purpose of this study was to investigate whether GGA could participate in the progression of pulmonary fibrosis in mice through apoptosis, oxidative stress and inflammation.

Methods and results

B-cell lymphoma-2(Bcl-2) and Bcl2-Associated X (Bax) are two proteins related to apoptosis. Anti-apoptotic factor Bcl-2 and pro-apoptotic factor Bax are often involved in the apoptotic process in the form of dimer. Immunofluorescence and Western blot results showed that bleomycin (BLM) and transforming growth factor-β (TGF-β) inhibited Bcl-2 expression and promoted Bax expression in vitro and in vivo, respectively. In contrast, GGA treatment reverses this change. Reactive oxygen species (ROS), Malondialdehyde (MDA) and superoxide dismutase (SOD) are markers of oxidative stress, which often reflect oxidative injury of cells. The detection of ROS, MDA and SOD expression showed that TGF-β and BLM treatment could significantly promote oxidative stress, while GGA treatment could alleviate oxidative stress damage. In addition, BLM significantly elevated Tumor necrosis factor-α(TNF-α), Interleukin1β (IL-1β) and Interleukin 6 (IL-6), while scutellarin reversed the above alterations except for that of GGA.

Results

Taken together, GGA suppressed apoptotic, oxidative stress and inflammation in BLM-induced pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Xie X, Wu X, Zhao D, Liu Y, Du Q, Li Y, Xu Y, Li Y, Qiu Y, Yang Y (2023) Fluvoxamine alleviates bleomycin-induced lung fibrosis via regulating the cGAS-STING pathway. Pharmacol Res 187:106577. https://doi.org/10.1016/j.phrs.2022.106577

    Article  CAS  PubMed  Google Scholar 

  2. Zhou C, Bai J, Jiang C, Ye L, Pan Y, Zhang H (2017) Geranylgeranylacetone attenuates myocardium ischemic/reperfusion injury through HSP70 and Akt/GSK-3β/eNOS pathway. Am J Transl Res 9(2):386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, &Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83. https://doi.org/10.1196/annals.1344.007

    Article  CAS  PubMed  Google Scholar 

  4. Kim JS, Son Y, Jung MG, Jeong YJ, Kim SH, Lee SJ, Lee YJ, Lee HJ (2016) Geranylgeranylacetone alleviates radiation-induced lung injury by inhibiting epithelial-to-mesenchymal transition signaling. Mol Med Rep 13(6):4666–4670. https://doi.org/10.3892/mmr.2016.5121

    Article  CAS  PubMed  Google Scholar 

  5. Pei Q, Ni W, Yuan Y, Yuan J, Zhang X, Yao M (2022) HSP70 ameliorates septic lung Injury via Inhibition of apoptosis by interacting with KANK2. Biomolecules 12(3). https://doi.org/10.3390/biom12030410

  6. Hao Q, Chen J, Lu H, Zhou X (2023) The ARTS of p53-dependent mitochondrial apoptosis. J Mol Cell Biol 14(10). https://doi.org/10.1093/jmcb/mjac074

  7. Spitz AZ, Gavathiotis E (2022) Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 43(3):206–220. https://doi.org/10.1016/j.tips.2021.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Choi HS, Lim ES, Baek KH (2022) Deubiquitinating enzyme USP12 regulates the pro-apoptosis protein bax. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113107

  9. Yi J, Kellner V, Joo H, Chien N, Patel S, Chaban Z, Tsai J (2023) Characterizing the consensus residue specificity and surface of BCL-2 binding to BH3 ligands using the knob-socket model. PLoS ONE 18(2):e0281463. https://doi.org/10.1371/journal.pone.0281463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Der Pol A, Van Gilst WH, Voors AA, Van Der Meer P (2019) Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21(4):425–435. https://doi.org/10.1002/ejhf.1320

    Article  PubMed  Google Scholar 

  11. Dong L, He J, Luo L, Wang K (2023) Targeting the interplay of Autophagy and ROS for Cancer Therapy: an updated overview on phytochemicals. Pharmaceuticals (Basel) 16(1). https://doi.org/10.3390/ph16010092

  12. Wei Y, Jia S, Ding Y, Xia S, Giunta S (2023) Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp Gerontol 172:112067. https://doi.org/10.1016/j.exger.2022.112067

    Article  CAS  PubMed  Google Scholar 

  13. Yin B, Zhang X, Ren J, Chen F, Liang J, Zhang H, Pei H, Hu Z, Wang Y, Xue W, Yu X, Zhang R, Ma Y (2023) The protective effects of procyanidin supplementation on PM(2.5)-induced acute cardiac injury in rats. Environ Sci Pollut Res Int 30(4):10890–10900. https://doi.org/10.1007/s11356-022-22938-5

    Article  CAS  PubMed  Google Scholar 

  14. Shahidani S, Jokar Z, Alaei H, Reisi P (2023) Effects of treadmill exercise and chronic stress on anxiety-like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine-treated rats. Synapse 77(1):e22256. https://doi.org/10.1002/syn.22256

    Article  CAS  PubMed  Google Scholar 

  15. Deger Y, Yur F, Ertekin A, Mert N, Dede S, Mert H (2007) Protective effect of alpha-tocopherol on oxidative stress in experimental pulmonary fibrosis in rats. Cell Biochem Funct 25(6):633–637. https://doi.org/10.1002/cbf.1362

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka J, Tajima S, Asakawa K, Sakagami T, Moriyama H, Takada T, Suzuki E, Narita I (2013) Preventive effect of irbesartan on bleomycin-induced lung injury in mice. Respir Investig 51(2):76–83. https://doi.org/10.1016/j.resinv.2012.12.005

    Article  PubMed  Google Scholar 

  17. Wang X, Zhao S, Lai J, Guan W, Gao Y (2021) Anti-inflammatory, antioxidant, and Antifibrotic Effects of Gingival-Derived MSCs on Bleomycin-Induced Pulmonary Fibrosis in mice. Int J Mol Sci 23(1). https://doi.org/10.3390/ijms23010099

  18. Senoo T, Sasaki R, Akazawa Y, Ichikawa T, Miuma S, Miyaaki H, Taura N, Nakao K (2018) Geranylgeranylacetone attenuates fibrogenic activity and induces apoptosis in cultured human hepatic stellate cells and reduces liver fibrosis in carbon tetrachloride-treated mice. BMC Gastroenterol 18(1):34. https://doi.org/10.1186/s12876-018-0761-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li S, Ye Q, Wei J, Taleb SJ, Wang H, Zhang Y, Kass DJ, Horowitz JC, Zhao J, Zhao Y (2023) Nedd4L suppression in lung fibroblasts facilitates pathogenesis of lung fibrosis. Transl Res 253:1–7. https://doi.org/10.1016/j.trsl.2022.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Finnerty JP, Ponnuswamy A, Dutta P, Abdelaziz A, Kamil H (2021) Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: a systematic review and meta-analysis. BMC Pulm Med 21(1):411. https://doi.org/10.1186/s12890-021-01783-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T (2010) Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 80(6):920–931. https://doi.org/10.1016/j.bcp.2010.05.025

    Article  CAS  PubMed  Google Scholar 

  22. Tashiro S, Miyake H, Rokutan K (2018) Role of geranylgeranylacetone as non-toxic HSP70 inducer in liver surgery: clinical application. J Hepatobiliary Pancreat Sci 25(5):269–274. https://doi.org/10.1002/jhbp.549

    Article  PubMed  Google Scholar 

  23. Shi F, Ma M, Zhai R, Ren Y, Li K, Wang H, Xu C, Huang X, Wang N, Zhou F, Yao W (2021) Overexpression of heat shock protein 70 inhibits epithelial-mesenchymal transition and cell migration induced by transforming growth factor-β in A549 cells. Cell Stress Chaperones 26(3):505–513. https://doi.org/10.1007/s12192-021-01196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang L, Liao J, Liu J, Wei Q, Wang Y (2021) Geranylgeranylacetone promotes human osteosarcoma cell apoptosis by inducing the degradation of PRMT1 through the E3 ubiquitin ligase CHIP. J Cell Mol Med 25(16):7961–7972. https://doi.org/10.1111/jcmm.16725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH (2020) Understanding oxidants and antioxidants: classical team with new players. J Food Biochem 44(3):e13145. https://doi.org/10.1111/jfbc.13145

    Article  PubMed  Google Scholar 

  26. Zhang Z, Qu J, Zheng C, Zhang P, Zhou W, Cui W, Mo X, Li L, Xu L, Gao J (2018) Nrf2 antioxidant pathway suppresses numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis. Cell Death Dis 9(2):83. https://doi.org/10.1038/s41419-017-0198-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amin MM, Rafiei N, Poursafa P, Ebrahimpour K, Mozafarian N, Shoshtari-Yeganeh B, Hashemi M, Kelishadi R (2018) Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. Environ Sci Pollut Res Int 25(34):34046–34052. https://doi.org/10.1007/s11356-018-3354-7

    Article  CAS  PubMed  Google Scholar 

  28. Roufayel R, Kadry S (2019) Molecular chaperone HSP70 and key regulators of apoptosis - A review. Curr Mol Med 19(5):315–325. https://doi.org/10.2174/1566524019666190326114720

    Article  CAS  PubMed  Google Scholar 

  29. Funk K, Czauderna C, Klesse R, Becker D, Hajduk J, Oelgeklaus A, Reichenbach F, Fimm-Todt F, Lauterwasser J, Galle PR, Marquardt JU, Edlich F (2020) BAX redistribution induces apoptosis resistance and selective stress sensitivity in Human HCC. Cancers (Basel) 12(6). https://doi.org/10.3390/cancers12061437

  30. Bonnardel E, Prevel R, Campagnac M, Dubreuil M, Marthan R, Berger P, Dupin I (2019) Determination of reliable lung function parameters in intubated mice. Respir Res 20(1):211. https://doi.org/10.1186/s12931-019-1177-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li QY, Xu HY, Yang HJ (2017) [Effect of proinflammatory factors TNF-α,IL-1β, IL-6 on neuropathic pain]. Zhongguo Zhong Yao Za Zhi 42(19):3709–3712. https://doi.org/10.19540/j.cnki.cjcmm.20170907.004

    Article  PubMed  Google Scholar 

  32. Gong C, Chu M, Yang J, Gong X, Han B, Chen L, Bai Z, Wang J, Zhang Y (2022) Ambient fine particulate matter exposures and human early placental inflammation. Environ Pollut 315:120446. https://doi.org/10.1016/j.envpol.2022.120446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed the Natural Science Foundation of Henan Province [grant numbers 222300420537]. In addition, we are thankful to Professor Fang Zhou for her advice and supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Yao or Fang Zhou.

Ethics declarations

Ethics approval

All studies were authorized by Life Science and Ethics Review committee in line with Guideline on Animal Experiments at Zhengzhou University.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Jin, C., Jiao, L. et al. GGA (geranylgeranylacetone) ameliorates bleomycin-induced lung inflammation and pulmonary fibrosis by inhibiting apoptosis and oxidative stress. Mol Biol Rep 50, 7215–7224 (2023). https://doi.org/10.1007/s11033-023-08590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08590-3

Keywords

Navigation