Skip to main content
Log in

Characterization of wheat Wrab18 gene promoter and expression analysis under abiotic stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2023

This article has been updated

Abstract

Background

Promoters play key roles in plant gene expression in complex and varied natural environments. The type and amount of cis-acting elements in the promoter sequence tend to indicate the response of genes to induction factors. WRAB18 is a group III member of the late embryogenesis abundant (LEA) protein family that performs multiple functions in plant stress physiology. To elucidate the particularly biological effects of WRAB18 on stress, exploration of its promoter sequence is necessary.

Methods and results

In this study, the full-length and promoter sequences of Wrab18 were isolated from the Zhengyin 1 cultivar of Triticum aestivum. The gene sequences and cis-acting elements in the promoter were analyzed using the Plant Promoter Database and bioinformatics methods. The results showed that Wrab18 possessed one intron with 100 bp, the promoter sequence contained various stress-related cis-acting elements, and the functionality of the promoter was checked using green fluorescent protein (GFP) marker protein expression by transient assay in Nicotiana benthamiana. Furthermore, based on promoter prediction analysis, quantitative real-time fluorescent PCR results confirmed the response of gene expression levels to stress factors.

Conclusions

In summary, the promoter sequence of Wrab18 plays a role in plant stress responses, contains multiple cis-acting elements, and provides insights into the role of WRAB18 in plant resilience to stress. This study has guiding significance for further studies of gene function and mechanism of action, and lays a theoretical foundation for improving wheat quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

LEA:

Late embryogenesis abundant

qPCR:

Quantitative real-time fluorescent PCR

GFP:

Green fluorescent protein

TSS:

Transcription start site

CTAB:

Cetyltrimethylammonium bromide

LB:

Luria-Bertani

CerealsDB:

Chinese Spring in Cereals Database

ORF:

Open reading frame

PPD:

Plant Promoter Database

ABA:

Abscisic acid

ABREs:

Abscisic acid responsive elements

GARC:

GA response complex

MBS:

MYB binding sites

MCS:

MYC recognition sites

LTREs:

Low temperature-responsive elements

GARE:

GA response element

References

  1. Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269. https://doi.org/10.1126/science.aaz7614

    Article  CAS  PubMed  Google Scholar 

  2. Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu QQ, Li QF (2022) Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiol 189:402–418. https://doi.org/10.1093/plphys/kiac043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang QY, Gu KD, Cheng L, Wang JH, Yu JQ, Wang XF, You CX, Hu DG, Hao YJ (2020) BTB-TAZ domain protein MdBT2 modulates Malate Accumulation and Vacuolar Acidification in response to Nitrate. Plant Physiol 183:750–764. https://doi.org/10.1104/pp.20.00208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479. https://doi.org/10.1146/annurev.biochem.72.121801.161520

    Article  CAS  PubMed  Google Scholar 

  5. Knudsen S (1999) Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics 15:356–361. https://doi.org/10.1093/bioinformatics/15.5.356

    Article  CAS  PubMed  Google Scholar 

  6. Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577:191–207. https://doi.org/10.1016/s0167-4781(02)00452-9

    Article  CAS  PubMed  Google Scholar 

  7. Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20:4754–4764. https://doi.org/10.1128/MCB.20.13.4754-4764.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kusnetsov V, Landsberger M, Meurer J, Oelmuller R (1999) The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 274:36009–36014. https://doi.org/10.1074/jbc.274.50.36009

    Article  CAS  PubMed  Google Scholar 

  9. Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, Sasano K, Kobayashi A, Hayami M, Fujii-Kuriyama Y (1992) Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J 11:3663–3671. https://doi.org/10.1002/j.1460-2075.1992.tb05451.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Xia W, Li H, Zeng H, Wei B, Han S, Yin C (2018) Salinity inhibits Rice seed germination by reducing alpha-amylase activity via decreased Bioactive Gibberellin Content. Front Plant Sci 9:275. https://doi.org/10.3389/fpls.2018.00275

    Article  PubMed  PubMed Central  Google Scholar 

  11. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24. https://doi.org/10.1104/pp.108.120725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE Jr (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118. https://doi.org/10.1007/s00425-009-0927-1

    Article  CAS  PubMed  Google Scholar 

  13. Zhao X, Dou L, Gong Z, Wang X, Mao T (2019) BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytol 221:908–918. https://doi.org/10.1111/nph.15437

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94. https://doi.org/10.1016/j.tplants.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  16. Chen KQ, Song MR, Guo YN, Liu LF, Xue H, Dai HY, Zhang ZH (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J 17:2341–2355. https://doi.org/10.1111/pbi.13151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu W, Zhang L, Lv H, Zhang H, Zhang D, Wang X, Chen J (2014) The dehydrin wzy2 promoter from wheat defines its contribution to stress tolerance. Funct Integr Genomics 14:111–125. https://doi.org/10.1007/s10142-013-0354-z

    Article  CAS  PubMed  Google Scholar 

  18. Gao Z, Zhao R, Ruan J (2013) A genome-wide cis-regulatory element discovery method based on promoter sequences and gene co-expression networks. BMC Genomics 14. https://doi.org/10.1186/1471-2164-14-S1-S4. Suppl 1:S4

  19. Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis plants. PLoS ONE 8:e54418. https://doi.org/10.1371/journal.pone.0054418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20:315–324. https://doi.org/10.1093/dnares/dst012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen H, Je J, Song C, Hwang JE, Lim CO (2012) A proximal promoter region of Arabidopsis DREB2C confers tissue-specific expression under heat stress. J Integr Plant Biol 54:640–651. https://doi.org/10.1111/j.1744-7909.2012.01137.x

    Article  CAS  PubMed  Google Scholar 

  22. Datukishvili N, Gabriadze I, Kutateladze T, Karseladze M, Vishnepolsky B (2010) Comparative evaluation of DNA extraction methods for food crops. Int J Food Sci Technol 45:1316–1320. https://doi.org/10.1111/j.1365-2621.2010.02261.x

    Article  CAS  Google Scholar 

  23. Minas K, McEwan NR, Newbold CJ, Scott KP (2011) Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 325:162–169. https://doi.org/10.1111/j.1574-6968.2011.02424.x

    Article  CAS  PubMed  Google Scholar 

  24. Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296. https://doi.org/10.1093/nar/27.1.295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munir S, Khan MR, Song J, Munir S, Zhang Y, Ye Z, Wang T (2016) Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiol Biochem 102:167–179. https://doi.org/10.1016/j.plaphy.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  26. Ma G, Zelman AK, Apicella PV, Berkowitz G (2022) Genome-wide identification and expression analysis of homeodomain leucine Zipper Subfamily IV (HD-ZIP IV) Gene Family in Cannabis sativa L. Plants (Basel) 11. https://doi.org/10.3390/plants11101307

  27. Utsugi S, Sakamoto W, Murata M, Motoyoshi F (1998) Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Mol Biol 38:565–576. https://doi.org/10.1023/a:1006072014605

    Article  CAS  PubMed  Google Scholar 

  28. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713. https://doi.org/10.1007/BF00029852

    Article  CAS  PubMed  Google Scholar 

  29. Barros-Galvao T, Dave A, Gilday AD, Harvey D, Vaistij FE, Graham IA (2020) ABA INSENSITIVE4 promotes rather than represses PHYA-dependent seed germination in Arabidopsis thaliana. New Phytol 226:953–956. https://doi.org/10.1111/nph.16363

    Article  PubMed  Google Scholar 

  30. Chen PW, Chiang CM, Tseng TH, Yu SM (2006) Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18:2326–2340. https://doi.org/10.1105/tpc.105.038844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lanahan MB, Ho TH, Rogers SW, Rogers JC (1992) A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4:203–211. https://doi.org/10.1105/tpc.4.2.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong YF, Ho TH, Wu CF, Ho SL, Yeh RH, Lu CA, Chen PW, Yu LC, Chao A, Yu SM (2012) Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals. Plant Cell 24:2857–2873. https://doi.org/10.1105/tpc.112.097741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6:849–860. https://doi.org/10.1046/j.1365-313x.1994.6060849.x

    Article  CAS  PubMed  Google Scholar 

  34. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868. https://doi.org/10.1105/tpc.9.10.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Straub PF, Shen Q, Ho TD (1994) Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630. https://doi.org/10.1007/BF00013748

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120. https://doi.org/10.1104/pp.101.3.1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vorst O, van Dam F, Oosterhoff-Teertstra R, Smeekens S, Weisbeek P (1990) Tissue-specific expression directed by an Arabidopsis thaliana pre-ferredoxin promoter in transgenic tobacco plants. Plant Mol Biol 14:491–499. https://doi.org/10.1007/BF00027495

    Article  CAS  PubMed  Google Scholar 

  38. Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166. https://doi.org/10.1104/pp.112.3.1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4:1435–1441. https://doi.org/10.1105/tpc.4.11.1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol 133:850–863. https://doi.org/10.1104/pp.103.027334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J 17:2341–2355. https://doi.org/10.1111/pbi.13151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003. https://doi.org/10.1042/BST20120109

    Article  CAS  PubMed  Google Scholar 

  43. Ye H, Qiao L, Guo H, Guo L, Ren F, Bai J, Wang Y (2021) Genome-wide identification of Wheat WRKY Gene Family reveals that TaWRKY75-A is referred to Drought and Salt Resistances. Front Plant Sci 12:663118. https://doi.org/10.3389/fpls.2021.663118

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kesawat MS, Kherawat BS, Singh A, Dey P, Routray S, Mohapatra C, Saha D, Ram C, Siddique KHM, Kumar A, Gupta R, Chung SM, Kumar M (2022) Genome-wide analysis and characterization of the Proline-Rich Extensin-like receptor kinases (PERKs) Gene Family reveals their role in different developmental stages and stress conditions in wheat (Triticum aestivum L). Plants (Basel) 11. https://doi.org/10.3390/plants11040496

  45. Pantelic A, Stevanovic S, Komic SM, Kilibarda N, Vidovic M (2022) In Silico Characterisation of the late embryogenesis abundant (LEA) protein families and their role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 23. https://doi.org/10.3390/ijms23073547

  46. Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D (2017) Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS ONE 12:e0171340. https://doi.org/10.1371/journal.pone.0171340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu F, Li M, He D, Yang P (2021) Advances on post-translational modifications involved in seed germination. Front Plant Sci 12:642979. https://doi.org/10.3389/fpls.2021.642979

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L). Plant Mol Biol 38:551–564. https://doi.org/10.1023/a:1006098132352

    Article  CAS  PubMed  Google Scholar 

  49. El-Shehawi AM, Elseehy MM, Hedgcoth C (2011) Isolation and sequence analysis of wheat tissue-specific cDNAs by Differential Display. Plant Mol Biology Report 29:135–148. https://doi.org/10.1007/s11105-010-0213-1

    Article  CAS  Google Scholar 

  50. Mogilicherla K, Athe RP, Chatterjee RN, Bhattacharya TK (2022) Identification of suitable reference genes for normalization of quantitative real-time PCR-based gene expression in chicken (Gallus gallus). Anim Genet. https://doi.org/10.1111/age.13252

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Zhenqing Bai for his great comments on the earlier version of this manuscript. We also thank Dr. Wenbo Yang for her kind providing for pTF486 vector using in the transient expression assay in N. benthamiana.

Funding

This study was funded by the State Key Laboratory of Crop Stress Biology for Arid Areas (grant number: CSBA2015007) and the Specialized Research Fund for the Doctoral Program of Higher Education (grant number: 20120204110033).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xiaoyu Wang and Linsheng Zhang designed the study. Zhengyang Yu and Weining Zhu analyzed the promoter sequence, and performed experiment with Xiaoyu Wang and Hao Liu. Xiaoyu Wang prepared the manuscripts, Bo Wang performed the transient expression assay and participated in the revision of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The captions of the figures were incorrectly swapped. It has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, H., Yu, Z. et al. Characterization of wheat Wrab18 gene promoter and expression analysis under abiotic stress. Mol Biol Rep 50, 5777–5789 (2023). https://doi.org/10.1007/s11033-023-08485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08485-3

Keywords

Navigation