Skip to main content

Advertisement

Log in

LncRNA HOTAIRM1 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting miR-152-3p/ETS1 axis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and thus present a tremendous therapeutic potential in osteoporosis. Here, we elucidated the involvement of long non-coding RNAs (lncRNAs) HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1) in the osteogenic differentiation of BMSCs.

Methods and results

The expression levels of HOTAIRM1, miR-152-3p, ETS proto-oncogene 1 (ETS1), runt-related transcription factor 2 (RUNX2), Osterix, and osteocalcin (OCN) were determined by a quantitative real-time polymerase chain reaction (qRT-PCR) or western blot method. Targeted relationship between miR-152-3p and HOTAIRM1 or ETS1 was confirmed by dual-luciferase reporter and RNA pull-down assays. The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. The extent of the calcium deposition was assessed by Alizarin Red Staining. Our data showed that HOTAIRM1 and ETS1 levels were up-regulated and miR-152-3p expression was down-regulated during osteogenic differentiation of human BMSCs (HBMSCs). HOTAIRM1 overexpression enhanced osteogenic differentiation of HBMSCs, and decreased level of HOTAIRM1 suppressed osteogenic differentiation of HBMSCs. HOTAIRM1 directly targeted miR-152-3p. ETS1 was identified as a direct and functional target of miR-152-3p. Furthermore, HOTAIRM1 functioned as a post-transcriptional regulator of ETS1 expression by miR-152-3p.

Conclusion

The findings in this paper identify HOTAIRM1 as a novel regulator of osteogenic differentiation of BMSCs by the regulation of miR-152-3p/ETS1 axis, uncovering HOTAIRM1 as a promising therapeutic strategy for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Ensrud KE, Crandall CJ (2017) Osteoporosis. Ann Intern Med 167(3):Itc17–Itc32. https://doi.org/10.7326/aitc201708010

  2. Alejandro P, Constantinescu F (2018) A review of osteoporosis in the older adult: an update. Rheum Dis Clin North Am 44(3):437–451. https://doi.org/10.1016/j.rdc.2018.03.004

    Article  PubMed  Google Scholar 

  3. Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y (2016) Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit 22:226–233. https://doi.org/10.12659/msm.897044

  4. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  5. Yang Q, Jia L, Li X, Guo R, Huang Y, Zheng Y et al (2018) Long noncoding RNAs: new players in the osteogenic differentiation of bone marrow- and adipose-derived mesenchymal stem cells. Stem Cell Rev Rep 14(3):297–308. https://doi.org/10.1007/s12015-018-9801-5

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Liu S, Shi J, Liu H, Li J, Zhao S et al (2020) The role of lncRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Curr Stem Cell Res Ther 15(3):243–249. https://doi.org/10.2174/1574888x15666191227113742

    Article  CAS  PubMed  Google Scholar 

  7. Shang G, Wang Y, Xu Y, Zhang S, Sun X, Guan H et al (2018) Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J Cell Physiol 233(8):6041–6051. https://doi.org/10.1002/jcp.26424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Zhao D, Zhu Y, Dong Y, Liu Y (2019) Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol Cell Endocrinol 496:110534. https://doi.org/10.1016/j.mce.2019.110534

  9. Wang Q, Li Y, Zhang Y, Ma L, Lin L, Meng J et al (2017) LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 89:1178–1186. https://doi.org/10.1016/j.biopha.2017.02.090

  10. Fu L, Peng S, Wu W, Ouyang Y, Tan D, Fu X (2019) LncRNA HOTAIRM1 promotes osteogenesis by controlling JNK/AP-1 signalling-mediated RUNX2 expression. J Cell Mol Med 23(11):7517–7524. https://doi.org/10.1111/jcmm.14620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Liu S, Li J, Zhao S, Yi Z (2019) Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 10(1):197. https://doi.org/10.1186/s13287-019-1309-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li B (2018) MicroRNA regulation in osteogenic and adipogenic differentiation of bone mesenchymal stem cells and its application in bone regeneration. Curr Stem Cell Res Ther 13(1):26–30. https://doi.org/10.2174/1574888x12666170605112727

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, Xing W, Gong X, Wang Y, Sun H (2019) Astragalus polysaccharide promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells by down-regulation of microRNA-152. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.108927

  14. Han S, Kuang M, Sun C, Wang H, Wang D, Liu Q (2020) Circular RNA hsa_circ_0076690 acts as a prognostic biomarker in osteoporosis and regulates osteogenic differentiation of hBMSCs via sponging miR-152. Aging (Albany NY) 12(14):15011–15020. https://doi.org/10.18632/aging.103560

  15. di Val R, Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H et al (2012) p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci USA 109(4):1133–1138. https://doi.org/10.1073/pnas.1112257109

    Article  Google Scholar 

  16. Del Real A, López-Delgado L, Sañudo C, García-Ibarbia C, Laguna E, Perez-Campo FM et al (2020) Long noncoding RNAs as bone marrow stem cell regulators in osteoporosis. DNA Cell Biol. https://doi.org/10.1089/dna.2020.5672

    Article  PubMed  Google Scholar 

  17. Li Q, Dong C, Cui J, Wang Y, Hong X (2018) Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res 37(1):265. https://doi.org/10.1186/s13046-018-0941-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang Q, Li X, Guan G, Xu X, Chen C, Cheng P et al (2019) Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging (Albany NY) 11(17):6805–6838. https://doi.org/10.18632/aging.102205

  19. Zhang Y, Mi L, Xuan Y, Gao C, Wang YH, Ming HX et al (2018) LncRNA HOTAIRM1 inhibits the progression of hepatocellular carcinoma by inhibiting the Wnt signaling pathway. Eur Rev Med Pharmacol Sci 22(15):4861–4868. https://doi.org/10.26355/eurrev_201808_15622

  20. Ren T, Hou J, Liu C, Shan F, Xiong X, Qin A et al (2019) The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells. Biomed Pharmacother 117:109171. https://doi.org/10.1016/j.biopha.2019.109171

  21. Rea J, Menci V, Tollis P, Santini T, Armaos A, Garone MG et al (2020) HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death Dis 11(7):527. https://doi.org/10.1038/s41419-020-02738-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xin J, Li J, Feng Y, Wang L, Zhang Y, Yang R (2017) Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960. Onco Targets Ther 10:1307–1315. https://doi.org/10.2147/ott.s124201

  23. Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR et al (2017) The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 24(2):212–224. https://doi.org/10.1038/cdd.2016.111

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Zheng J, Hong H, Chen D, Deng L, Zhang X et al (2020) lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol. https://doi.org/10.1002/jcp.29695

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Wang Y, Lin J (2018) MiR-152-3p promotes the development of chronic myeloid leukemia by inhibiting p27. Eur Rev Med Pharmacol Sci 22(24):8789–8796. https://doi.org/10.26355/eurrev_201812_16646

  26. Feng F, Liu H, Chen A, Xia Q, Zhao Y, Jin X et al (2019) miR-148-3p and miR-152-3p synergistically regulate prostate cancer progression via repressing KLF4. J Cell Biochem 120(10):17228–17239. https://doi.org/10.1002/jcb.28984

    Article  CAS  PubMed  Google Scholar 

  27. Zhang A, Qian Y, Qian J (2019) MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93. Biochem Biophys Res Commun 517(1):69–76. https://doi.org/10.1016/j.bbrc.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  28. Roux M, Perret C, Feigerlova E, Mohand Oumoussa B, Saulnier PJ, Proust C et al (2018) Plasma levels of hsa-miR-152-3p are associated with diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transpl 33(12):2201–2207. https://doi.org/10.1093/ndt/gfx367

    Article  CAS  Google Scholar 

  29. Ma P, Zhang C, Huo P, Li Y, Yang H (2020) A novel role of the miR-152-3p/ERRFI1/STAT3 pathway modulates the apoptosis and inflammatory response after acute kidney injury. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22540

  30. Dittmer J (2015) The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2015.09.010

  31. Gao Y, Ganss BW, Wang H, Kitching RE, Seth A (2005) The RING finger protein RNF11 is expressed in bone cells during osteogenesis and is regulated by Ets1. Exp Cell Res 304(1):127–135. https://doi.org/10.1016/j.yexcr.2004.10.031

    Article  CAS  PubMed  Google Scholar 

  32. Koyama T, Kamemura K (2015) Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp Cell Res 338(2):194–202. https://doi.org/10.1016/j.yexcr.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  33. Qi MC, Hu J, Zou SJ, Chen HQ, Zhou HX, Han LC (2008) Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg 37(5):453–458. https://doi.org/10.1016/j.ijom.2007.12.008

    Article  PubMed  Google Scholar 

  34. Fan Q, Li Y, Sun Q, Jia Y, He C, Sun T (2020) miR-532-3p inhibits osteogenic differentiation in MC3T3-E1 cells by downregulating ETS1. Biochem Biophys Res Commun 525(2):498–504. https://doi.org/10.1016/j.bbrc.2020.02.126

    Article  CAS  PubMed  Google Scholar 

  35. Hua L, Zhang X (2021) MALAT1 regulates osteogenic differentiation of human periodontal ligament stem cells through mediating miR-155-5p/ETS1 axis. Tissue Cell 73:101619. https://doi.org/10.1016/j.tice.2021.101619

  36. Ren L, Guo L, Kou N, Lv J, Wang Z, Yang K (2021) LncRNA LINC00963 promotes osteogenic differentiation of hBMSCs and alleviates osteoporosis progression by targeting miRNA-760/ETS1 axis. Autoimmunity 54(6):313–325. https://doi.org/10.1080/08916934.2021.1922890

    Article  CAS  PubMed  Google Scholar 

  37. Xia W, Han X, Wang L (2021) E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression. J Biomed Res 36(1):39–47. https://doi.org/10.7555/jbr.35.20210123

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li R, Dong Y, Li F (2021) ETS proto-oncogene 1 suppresses MicroRNA-128 transcription to promote osteogenic differentiation through the HOXA13/β-catenin axis. Front Physiol 12:626248. https://doi.org/10.3389/fphys.2021.626248

  39. Arthur A, Gronthos S (2020) Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci. https://doi.org/10.3390/ijms21249759

  40. Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y (2021) Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif 54(1):e12956. https://doi.org/10.1111/cpr.12956

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contribution to conception and design, acquisition of the data, or analysis and interpretation of the data; take part in drafting the article or revising it critically for important intellectual content; gave final approval of the revision to be published; and agree to be accountable for all aspect of the work.

Corresponding author

Correspondence to Ping Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflict of interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Tianjin Medical University General Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 172 KB)

Supplementary file 2 (DOCX 223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Y. & Lei, P. LncRNA HOTAIRM1 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting miR-152-3p/ETS1 axis. Mol Biol Rep 50, 5597–5608 (2023). https://doi.org/10.1007/s11033-023-08466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08466-6

Keywords

Navigation