Skip to main content

Advertisement

Log in

lncRNA SERPINB9P1 Regulates SIRT6 Mediated Osteogenic Differentiation of BMSCs via miR-545-3p

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Evidence has shown that the altered osteogenic differentiation of human bone marrow stromal cells (BMSCs) under pathological conditions, such as osteoporosis, lead to the imbalance of bone tissue generation and destruction. Recent studies have indicated that long noncoding RNAs may play a role in regulating BMSCs osteogenic differentiation. This contributed to our impetus to move forward with the investigation of the function of lncRNA SERPINB9P1 in osteogenic differentiation of BMSCs and the potential mechanisms involved. Osteogenic differentiation of BMSCs was induced by osteogenic medium. Relative expression of lncRNA SERPINB9P1 and miR-545-3p were tested by qRT-PCR. Osteogenic mineralization was examined by Alizarin S Red staining, ALP staining, and ALP activity assay. Expression of osteoblastic markers were detected by Western blot. RNA-binding protein immunoprecipitation and dual-luciferase reporter assays were performed to test the interaction between lncRNA SERPINB9P1 and miR-545-3p. BMSCs osteogenic differentiation resulted in LncRNA SERPINB9P1 overexpression while miR-545-3p inhibition. Functional assays suggest that knockdown of lncRNA SERPINB9P1 or overexpression of miR-545-3p both inhibit BMSC osteogenic differentiation. lncRNA SERPINB9P1 was proven to regulate the osteogenic differentiation of BMSCs by altering SIRT6 expression through its suppressive effects on miR-545-3p. lncRNA SERPINB9P1 promotes osteogenic differentiation of BMSCs through the miR-545-3p/SIRT6 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

lncRNA:

Long non-coding RNA

MiR:

MicroRNA

MSC:

Marrow stem cell

BMSC:

Bone marrow stem cell

OP:

Osteoporosis

OB:

Osteoblasts

OM:

Osteogenic medium

ALP:

Alkaline phosphatase

References

  1. Li H, Ghazanfari R, Zacharaki D, Lim HC, Scheding S (2016) Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann N Y Acad Sci 1370(1):109–118

    Article  CAS  Google Scholar 

  2. Derubeis AR, Cancedda R (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32(1):160–165

    Article  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  4. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    Article  CAS  Google Scholar 

  5. Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4(3):290–294

    Article  CAS  Google Scholar 

  6. Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ et al (2004) Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 19(5):830–840

    Article  CAS  Google Scholar 

  7. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10(2):92–96

    Article  Google Scholar 

  8. Xia WB, He SL, Xu L, Liu AM, Jiang Y, Li M et al (2012) Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res 27(1):125–129

    Article  Google Scholar 

  9. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101(26):9607–9611

    Article  CAS  Google Scholar 

  10. Jacobsen CM, Schwartz MA, Roberts HJ, Lim KE, Spevak L, Boskey AL et al (2016) Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta. Bone 90:127–132

    Article  CAS  Google Scholar 

  11. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380

    Article  CAS  Google Scholar 

  12. Johnson ML, Kamel MA (2007) The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol 19(4):376–382

    Article  CAS  Google Scholar 

  13. Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A et al (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20(22):5525

    Article  CAS  Google Scholar 

  14. Lindsey RC, Rundle CH, Mohan S (2018) Role of IGF1 and EFN-EPH signaling in skeletal metabolism. J Mol Endocrinol 61(1):T87–T102

    Article  CAS  Google Scholar 

  15. Zhao S, Chen H, Ding B, Li J, Lv F, Han K et al (2019) Construction of a transcription factorlong noncoding RNAmicroRNA network for the identification of key regulators in lung adenocarcinoma and lung squamous cell carcinoma. Mol Med Rep 19(2):1101–1109

    CAS  Google Scholar 

  16. Yan H, Wang Q, Shen Q, Li Z, Tian J, Jiang Q et al (2018) Identification of potential transcription factors, long noncoding RNAs, and microRNAs associated with hepatocellular carcinoma. J Cancer Res Ther 14(Supplement):S622–S627

    Article  CAS  Google Scholar 

  17. Jiang L, Yu X, Ma X, Liu H, Zhou S, Zhou X et al (2019) Identification of transcription factor-miRNA-lncRNA feed-forward loops in breast cancer subtypes. Comput Biol Chem 78:1–7

    Article  Google Scholar 

  18. Song WQ, Gu WQ, Qian YB, Ma X, Mao YJ, Liu WJ (2015) Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genet Mol Res 14(4):18268–18279

    Article  CAS  Google Scholar 

  19. Luo M, Huang HX, Huang H, Li ZT, Lai YY (2014) Hedgehog signaling pathway and osteoporosis. Zhongguo Gu Shang 27(2):169–172

    CAS  Google Scholar 

  20. Li B (2018) MicroRNA regulation in osteogenic and adipogenic differentiation of bone mesenchymal stem cells and its application in bone regeneration. Curr Stem Cell Res Ther 13(1):26–30

    CAS  Google Scholar 

  21. Liu L, Wang H, Zhang X, Chen R (2020) Identification of potential biomarkers in neonatal sepsis by establishing a competitive endogenous RNA network. Comb Chem High Throughput Screen 23(5):369–380

    Article  CAS  Google Scholar 

  22. Wang S (2020) Investigation of long non-coding RNA expression profiles in patients with post-menopausal osteoporosis by RNA sequencing. Exp Ther Med 20(2):1487–1497

    Article  CAS  Google Scholar 

  23. Li L, Qiu X, Sun Y, Zhang N, Wang L (2019) SP1-stimulated miR-545-3p inhibits osteogenesis via targeting LRP5-activated Wnt/beta-catenin signaling. Biochem Biophys Res Commun 517(1):103–110

    Article  CAS  Google Scholar 

  24. Kim SJ, Piao Y, Lee MG, Han AR, Kim K, Hwang CJ et al (2020) Loss of Sirtuin 6 in osteoblast lineage cells activates osteoclasts, resulting in osteopenia. Bone 138:115497

    Article  CAS  Google Scholar 

  25. Shen X, Chen X, Huang J, Xu R, Cheng J, Jiang H (2020) Age-dependent role of SIRT6 in jawbone via regulating senescence and autophagy of bone marrow stromal cells. J Mol Histol 51(1):67–76

    Article  CAS  Google Scholar 

  26. Xiao F, Zhou Y, Liu Y, Xie M, Guo G (2019) Inhibitory effect of Sirtuin6 (SIRT6) on osteogenic differentiation of bone marrow mesenchymal stem cells. Med Sci Monit 25:8412–8421

    Article  CAS  Google Scholar 

  27. Wei W, Guo X, Gu L, Jia J, Yang M, Yuan W et al (2021) Bone marrow mesenchymal stem cell exosomes suppress phosphate-induced aortic calcification via SIRT6-HMGB1 deacetylation. Stem Cell Res Ther 12(1):235

    Article  CAS  Google Scholar 

  28. Pan XH, Chen YH, Yang YK, Zhang XJ, Lin QK, Li ZA et al (2019) Relationship between senescence in macaques and bone marrow mesenchymal stem cells and the molecular mechanism. Aging (Albany NY) 11(2):590–614

    Article  CAS  Google Scholar 

  29. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117(18):2340–2350

    Article  CAS  Google Scholar 

  30. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139

    Article  CAS  Google Scholar 

  31. Kim J, Ko J (2014) A novel PPARgamma2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death Differ 21(10):1642–1655

    Article  CAS  Google Scholar 

  32. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364

    Article  Google Scholar 

  33. Liao L, Yang X, Su X, Hu C, Zhu X, Yang N et al (2013) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600

    Article  CAS  Google Scholar 

  34. Kim M, Lee YJ, Jee SC, Choi I, Sung JS (2016) Anti-adipogenic effects of sesamol on human mesenchymal stem cells. Biochem Biophys Res Commun 469(1):49–54

    Article  CAS  Google Scholar 

  35. An Q, Wu D, Ma Y, Zhou B, Liu Q (2015) Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med 36(6):1615–1622

    Article  CAS  Google Scholar 

  36. Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y (2016) Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit 22:226–233

    Article  CAS  Google Scholar 

  37. Jiang S, Xia M, Yang J, Shao J, Liao X, Zhu J et al (2015) Novel insights into a treatment for aplastic anemia based on the advanced proliferation of bone marrowderived mesenchymal stem cells induced by fibroblast growth factor 1. Mol Med Rep 12(6):7877–7882

    Article  CAS  Google Scholar 

  38. Zhang J, Xu N, Yu C, Miao K, Wang Q (2021) LncRNA PART1/miR-185-5p/RUNX3 feedback loop modulates osteogenic differentiation of bone marrow mesenchymal stem cells. Autoimmunity 54(7):422–429

    Article  CAS  Google Scholar 

  39. Xiang J, Fu HQ, Xu Z, Fan WJ, Liu F, Chen B (2020) lncRNA SNHG1 attenuates osteogenic differentiation via the miR101/DKK1 axis in bone marrow mesenchymal stem cells. Mol Med Rep 22(5):3715–3722

    CAS  Google Scholar 

  40. Zhang Z, Jiang W, Hu M, Gao R, Zhou X (2021) MiR-486-3p promotes osteogenic differentiation of BMSC by targeting CTNNBIP1 and activating the Wnt/beta-catenin pathway. Biochem Biophys Res Commun 566:59–66

    Article  CAS  Google Scholar 

  41. Zhao C, Gu Y, Wang Y, Qin Q, Wang T, Huang M et al (2021) miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration via repressing Dkk3. Stem Cells Int 2021:7435605

    Article  Google Scholar 

  42. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  43. Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y et al (2015) The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 6(23):19759–19779

    Article  Google Scholar 

  44. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939

    Article  Google Scholar 

  45. Xiao J, Qin S, Li W, Yao L, Huang P, Liao J et al (2020) Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 253:117660

    Article  CAS  Google Scholar 

  46. Zhao J, Liu S, Zhang W, Ni L, Hu Z, Sheng Z et al (2019) MiR-128 inhibits the osteogenic differentiation in osteoporosis by down-regulating SIRT6 expression. Biosci Rep. https://doi.org/10.1042/BSR20191405

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Lu.

Ethics declarations

Conflict of interest

Min Wu, Min Dai, Xuqiang Liu, Qunqun Zeng, and Yingjie Lu declare that they have no conflict of interest.

Ethics approval and consent to participate

Human bone marrow was collected in orthopaedic surgery. All people have consented to the study, and the procedures were approved by the Ethics Committee of the Affiliated Children's Hospital of Nanchang University (JXSETYY-YXKY-20220183).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

223_2022_1034_MOESM1_ESM.tif

Supplemental Figure 1. lncRNA SERPINB9P1 was elevated and miR-545-3p was decreased during BMSC osteogenic differentiation. (A) The phenotype of BMSCs were tested by flow cytometry. (B) Relative expression of ALP, Runx2, and OCN were detected on days 0, 1, 5, 10, and 15. GAPDH as the loading control. (C) Relative expression of lncRNA SERPINB9P1 and miR-545-3p during BMSC osteogenic differentiation on days 0, 1, 5, 10, and 15. Data indicate mean ± SD, n = 3. *p < 0.05, **p < 0.01, and ***p < 0.001. Supplementary file1 (TIF 9702 KB)

223_2022_1034_MOESM2_ESM.tif

Supplemental Figure 2 lncRNA SERPINB9P1 overexpression and miR-545-3p inhibition decreased the expression of RANKL and increased the expression of OPG. (A and B) Western blot was performed to test the protein expression of RANKL and OPG in BMSCs treated with lncRNA SERPINB9P1 overexpression plasmid (oe-SERPINB9P1) or miR-545-3p inhibitor. Supplementary file2 (TIF 832 KB)

Supplemental Figure 3 UCSC homology prediction. Supplementary file3 (PNG 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Dai, M., Liu, X. et al. lncRNA SERPINB9P1 Regulates SIRT6 Mediated Osteogenic Differentiation of BMSCs via miR-545-3p. Calcif Tissue Int 112, 92–102 (2023). https://doi.org/10.1007/s00223-022-01034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01034-3

Keywords

Navigation