Skip to main content

Advertisement

Log in

Emerging trends in IRAK-4 kinase research

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/β receptor (IFNα/β). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the “scaffolding effect” because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC (2009) IRAK-4 inhibitors for inflammation. Curr Top Med Chem 9(8):724–737. https://doi.org/10.2174/156802609789044407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suzuki N, Suzuki S, Yeh WC (2002) IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol 23(10):503–506. https://doi.org/10.1016/s1471-4906(02)02298-6

    Article  CAS  PubMed  Google Scholar 

  3. Li X (2008) IRAK-4 in TLR/IL-1R signaling: possible clinical applications. Eur J Immunol 38(3):614–618. https://doi.org/10.1002/eji.200838161

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99(8):5567–5572. https://doi.org/10.1073/pnas.082100399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki N, Saito T (2006) IRAK-4–a shared NF-kappaB activator in innate and acquired immunity. Trends Immunol 27(12):566–572. https://doi.org/10.1016/j.it.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, Morrice N, O’Neill LA (2010) IRAK1 and IRAK-4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem 285(24):18276–18282. https://doi.org/10.1074/jbc.M109.098137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9(6):684–691. https://doi.org/10.1038/ni.1606

    Article  CAS  PubMed  Google Scholar 

  8. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, …, Casanova JL (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Sci (New York N Y) 299(5615):2076–2079. https://doi.org/10.1126/science.1081902

    Article  CAS  Google Scholar 

  9. Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, Chrabieh M, Issekutz AC, Cunningham CK, Gallin J, Holland SM, Roifman C, Ehl S, Smart J, Tang M, Barrat FJ, Levy O, McDonald D, Day-Good NK, Miller R, …, Casanova JL (2007) Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204(10):2407–2422. https://doi.org/10.1084/jem.20070628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawagoe T, Sato S, Jung A, Yamamoto M, Matsui K, Kato H, Uematsu S, Takeuchi O, Akira S (2007) Essential role of IRAK-4 protein and its kinase activity in toll-like receptor-mediated immune responses but not in TCR signaling. J Exp Med 204(5):1013–1024. https://doi.org/10.1084/jem.20061523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koziczak-Holbro M, Joyce C, Glück A, Kinzel B, Müller M, Gram H (2007) Solving the IRAK-4 enigma: application of kinase-dead knock-in mice. Ernst Schering Foundation symposium proceedings, (3), 63–82

  12. Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Benedetti F (2010) Interleukin-1β and interleukin-6 in arthritis animal models: roles in the early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med (Cambridge Mass) 16(11–12):552–557. https://doi.org/10.2119/molmed.2010.00067

    Article  CAS  Google Scholar 

  13. Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, Kovarik J, Dawson J, Zenke G, Burkhart C, Müller M, Gram H (2009) The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. Arthritis Rheum 60(6):1661–1671. https://doi.org/10.1002/art.24552

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC (2002) Severe impairment of interleukin-1 and toll-like receptor signalling in mice lacking IRAK-4. Nature 416(6882):750–756. https://doi.org/10.1038/nature736

    Article  CAS  PubMed  Google Scholar 

  15. Kuek A, Hazleman BL, Ostör AJ (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 83(978):251–260. https://doi.org/10.1136/pgmj.2006.052688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhary D, Robinson S, Romero DL (2015) Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK-4) as a therapeutic target for inflammation and oncology disorders. J Med Chem 58(1):96–110. https://doi.org/10.1021/jm5016044

    Article  CAS  PubMed  Google Scholar 

  17. Hynes J Jr, Nair SK (2014) Advances in the discovery of small-molecule IRAK-4 inhibitors. In: Manoj CD, editor. Annual reports in medicinal chemistry, vol. 49. Cambridge, MA: Academic Press; p. 117–33. Chapter 9

  18. Seganish WM (2016) Inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK-4): a patent review (2012–2015). Expert Opin Ther Pat 26(8):917–932. https://doi.org/10.1080/13543776.2016.1202926

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC (2009) IRAK-4 inhibitors for inflammation. Curr Top Med Chem 9(8):724–737. https://doi.org/10.2174/156802609789044407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32(3):305–315. https://doi.org/10.1016/j.immuni.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  21. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680. https://doi.org/10.1038/90609

    Article  CAS  PubMed  Google Scholar 

  22. Boraschi D, Tagliabue A (2013) The interleukin-1 receptor family. Semin Immunol 25(6):394–407. https://doi.org/10.1016/j.smim.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  23. Sabroe I, Read RC, Whyte MK, Dockrell DH, Vogel SN, Dower SK (2003) Toll-like receptors in health and disease: complex questions remain. J Immunol (Baltimore Md: 1950) 171(4):1630–1635. https://doi.org/10.4049/jimmunol.171.4.1630

    Article  CAS  Google Scholar 

  24. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28(10):429–436. https://doi.org/10.1016/j.it.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  25. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK-4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890. https://doi.org/10.1038/nature09121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Qiao Q, Ferrao R, Shen C, Hatcher JM, Buhrlage SJ, Gray NS, Wu H (2017) Crystal structure of human IRAK1. Proc Natl Acad Sci USA 114(51):13507–13512. https://doi.org/10.1073/pnas.1714386114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu F, Xia Y, Parker AS, Verma IM (2012) IKK biology. Immunol Rev 246(1):239–253. https://doi.org/10.1111/j.1600-065X.2012.01107.x

  28. Li Q, Verma I (2002) NF-?B regulation in the immune system. Nat Rev Immunol 2, 725–734. https://doi.org/10.1038/nri910

  29. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9(6):684–691. https://doi.org/10.1038/ni.1606

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP (2006) Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure (London, England: 1993), 14(12), 1835–1844. https://doi.org/10.1016/j.str.2006.11.001

  31. Genung NE, Guckian KM (2017) Small molecule inhibition of Interleukin-1 Receptor-Associated kinase 4 (IRAK-4). Prog Med Chem 56:117–163. https://doi.org/10.1016/bs.pmch.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Nouri AM, Panayi GS, Goodman SM (1984) Cytokines and the chronic inflammation of rheumatic disease. I. The presence of interleukin-1 in synovial fluids. Clin Exp Immunol 55(2):295–302

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van den Berg WB, Joosten LA, Helsen M, van de Loo FA (1994) Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin Exp Immunol 95(2):237–243. https://doi.org/10.1111/j.1365-2249.1994.tb06517.x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abdollahi-Roodsaz S, Joosten LA, Roelofs MF, Radstake TR, Matera G, Popa C, van der Meer JW, Netea MG, van den Berg WB (2007) Inhibition of toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 56(9):2957–2967. https://doi.org/10.1002/art.22848

    Article  CAS  PubMed  Google Scholar 

  35. Lartigue A, Colliou N, Calbo S, François A, Jacquot S, Arnoult C, Tron F, Gilbert D, Musette P (2009) Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. J Immunol (Baltimore Md: 1950) 183(10):6207–6216. https://doi.org/10.4049/jimmunol.0803219

    Article  CAS  Google Scholar 

  36. Chiang EY, Yu X, Grogan JL (2011) Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. J Immunol (Baltimore Md: 1950) 186(2):1279–1288. https://doi.org/10.4049/jimmunol.1002821

    Article  CAS  Google Scholar 

  37. Sadanaga A, Nakashima H, Akahoshi M, Masutani K, Miyake K, Igawa T, Sugiyama N, Niiro H, Harada M (2007) Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum 56(5):1618–1628. https://doi.org/10.1002/art.22571

    Article  CAS  PubMed  Google Scholar 

  38. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, Maloy KJ (2012) IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med 209(9):1595–1609. https://doi.org/10.1084/jem.20111453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Low HZ, Witte T (2011) Aspects of innate immunity in Sjögren’s syndrome. Arthritis research & therapy 13(3):218. https://doi.org/10.1186/ar3318

    Article  CAS  Google Scholar 

  40. Chen DY, Lin CC, Chen YM, Lan JL, Hung WT, Chen HH, Lai KL, Hsieh CW (2013) Involvement of TLR7 MyD88-dependent signaling pathway in the pathogenesis of adult-onset still’s disease. Arthritis research & therapy 15(2):R39. https://doi.org/10.1186/ar4193

    Article  CAS  Google Scholar 

  41. Dudhgaonkar, S., Ranade, S., Nagar, J., Subramani, S., Prasad, D. S., Karunanithi,P., Srivastava, R., Venkatesh, K., Selvam, S., Krishnamurthy, P., Mariappan, T. T.,Saxena, A., Fan, L., Stetsko, D. K., Holloway, D. A., Li, X., Zhu, J., Yang, W. P.,Ruepp, S., Nair, S., … Carman, J. A. (2017). Selective IRAK-4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity. Journal of immunology (Baltimore, Md.: 1950), 198(3), 1308–1319. https://doi.org/10.4049/jimmunol.1600583

  42. Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA, Zomorrodi RK, Arami S, Gonzalez M, Rao V, Zanotti B, Fox DA, Sweiss N, Shahrara S (2021) IRAK-4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cellular & molecular immunology 18(9):2199–2210. https://doi.org/10.1038/s41423-020-0433-8

    Article  CAS  Google Scholar 

  43. Lamagna C, Chan M, Tai1 E, Siu S 1, Frances R, Yi S, Young C, Markovtsov V, Chen Y, Chou L, Park G, Masuda E, Taylor V (2020) OP0133 Preclinical efficacy of R835, a novel IRAK1/4 dual inhibitor, in rodent models of joint inflammation. Ann Rheum Dis 79:86

  44. Kelly PN, Romero DL, Yang Y, Shaffer AL 3rd, Chaudhary D, Robinson S, Miao W, Rui L, Westlin WF, Kapeller R, Staudt LM (2015) Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med 212(13):2189–2201. https://doi.org/10.1084/jem.20151074

  45. Danto SI, Shojaee N, Singh RSP et al Efficacy and safety of the selective interleukin-1 receptor-associated kinase 4 inhibitor, PF-06650833, in patients with active rheumatoid arthritis and inadequate response to methotrexate. Presented at: 2019 ACR/ARP Annual Meeting; November 8–13, 2019; Atlanta, GA. Abstract 2909

  46. Wiese MD, Manning-Bennett AT, Abuhelwa AY (2020) Investigational IRAK-4 inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 29(5):475–482. https://doi.org/10.1080/13543784.2020.1752660

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava R, Geng D, Liu Y, Zheng L, Li Z, Joseph MA, McKenna C, Bansal N, Ochoa A, Davila E (2012) Augmentation of therapeutic responses in melanoma by inhibition of IRAK-1,-4. Cancer Res 72(23):6209–6216. https://doi.org/10.1158/0008-5472.CAN-12-0337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Z, Younger K, Gartenhaus R, Joseph AM, Hu F, Baer MR, Brown P, Davila E (2015) Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. J Clin Investig 125(3):1081–1097. https://doi.org/10.1172/JCI75821

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chaudhary D, Wood N, Romero DL, Robinson SD, Greenwood JR, Shelley M, Michael, Morin M, Kapeller R, Westlin WF (2013) Synergistic blockade of activated B cell-like DLBCL proliferation with a selective inhibitor of IRAK-4 in combination with inhibition of the B-cell receptor signaling network. Blood 2013; 122 (21): 3833. doi: https://doi.org/10.1182/blood.V122.21.3833.3833

  50. Booher R, Samson M, Xu G, Cheng H, Tuck D (2017) Abstract 1168: efficacy of the IRAK4 inhibitor CA-4948 in patient-derived xenograft models of diffuse large B cell lymphoma. Cancer Res 77:1168–1168. https://doi.org/10.1158/1538-7445.AM2017-1168

    Article  Google Scholar 

  51. Shastri A, Will B, Steidl U, Verma A (2017) Stem and progenitor cell alterations in myelodysplastic syndromes. Blood, 129(12):1586–1594. https://doi.org/10.1182/blood-2016-10-696062

  52. Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens DV, Pradhan K, Steeples V, Kim S, Steidl U, Walter M, Fraser IDC, Kulkarni A, Salomonis N, Komurov K, Boultwood J, Verma A, Starczynowski DT (2019) U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol, 21(5):640–650. https://doi.org/10.1038/s41556-019-0314-5

  53. Garcia-Manero G, Winer ES, DeAngelo DJ, Tarantolo SR, Sallman DA, Dugan J (2022) Phase 1/2a study of the IRAK4 inhibitor CA-4948 as monotherapy or in combination with azacitidine or venetoclax in patients with relapsed/refractory (R/R) acute myeloid leukemia or lyelodysplastic syndrome. J Clin Oncol 40(16 suppl):7016

  54. Kondo M, Tahara A, Hayashi K, Inami H, Ishikawa T, Tomura Y (2020) Therapeutic effects of interleukin-1 receptor-associated kinase 4 inhibitor AS2444697 on diabetic nephropathy in type 2 diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 393(7):1197–1209. https://doi.org/10.1007/s00210-020-01816-2

    Article  CAS  PubMed  Google Scholar 

  55. Bai S, Li D, Zhou Z, Cao J, Xu T, Zhang X, Wang Y, Guo J, Zhang Y (2015) Interleukin-1 Receptor-Associated kinase 1/4 as a Novel Target for inhibiting neointimal formation after Carotid Balloon Injury. J Atheroscler Thromb 22(12):1317–1337. https://doi.org/10.5551/jat.29421

    Article  CAS  PubMed  Google Scholar 

  56. Yang YF, Chen Z, Hu SL, Hu J, Li B, Li JT, Wei LJ, Qian ZM, Lin JK, Feng H, Zhu G (2011) Interleukin-1 receptor associated kinases-1/4 inhibition protects against acute hypoxia/ischemia-induced neuronal injury in vivo and in vitro. Neuroscience 196:25–34. https://doi.org/10.1016/j.neuroscience.2011.08.059

    Article  CAS  PubMed  Google Scholar 

  57. Pletinckx K, Krings D, Welbers A, Rider DA, Dunkern TR (2020) Central IRAK-4 kinase inhibition for the treatment of pain following nerve injury in rats. Brain Behav Immun 88:781–790. https://doi.org/10.1016/j.bbi.2020.05.035

    Article  CAS  PubMed  Google Scholar 

  58. Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187(6):761–772. https://doi.org/10.1083/jcb.200908164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chattopadhyay M, Valentine JS (2009) Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxidants & redox signaling 11(7):1603–1614. https://doi.org/10.1089/ars.2009.2536

    Article  CAS  Google Scholar 

  60. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle & nerve 26(4):459–470. https://doi.org/10.1002/mus.10191

    Article  CAS  Google Scholar 

  61. Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci USA 107(29):13046–13050. https://doi.org/10.1073/pnas.1002396107

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Sci (New York N Y) 288(5464):335–339. https://doi.org/10.1126/science.288.5464.335

    Article  CAS  Google Scholar 

  63. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AH, Kaspar BK (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828. https://doi.org/10.1038/nbt.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swarup V, Phaneuf D, Dupré N, Petri S, Strong M, Kriz J, Julien JP (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447. https://doi.org/10.1084/jem.20111313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3(77):77sr1. https://doi.org/10.1126/scitranslmed.3002369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zuliani G, Ranzini M, Guerra G, Rossi L, Munari MR, Zurlo A, Volpato S, Atti AR, Blè A, Fellin R (2007) Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 41(8):686–693. https://doi.org/10.1016/j.jpsychires.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  67. Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of translational medicine 3(10):136. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 107(13):6058–6063. https://doi.org/10.1073/pnas.0909586107

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Investig 117(6):1595–1604. https://doi.org/10.1172/JCI31450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200. https://doi.org/10.1016/0304-3940(87)90696-3

    Article  CAS  PubMed  Google Scholar 

  71. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y, Rogers J (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35(1):72–79. https://doi.org/10.1002/glia.1072

    Article  CAS  PubMed  Google Scholar 

  72. Apelt J, Schliebs R (2001) Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 894(1):21–30. https://doi.org/10.1016/s0006-8993(00)03176-0

    Article  CAS  PubMed  Google Scholar 

  73. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol biochemistry: Int J experimental Cell Physiol Biochem Pharmacol 20(6):947–956. https://doi.org/10.1159/000110455

    Article  CAS  Google Scholar 

  74. Cameron B, Tse W, Lamb R, Li X, Lamb BT, Landreth GE (2012) Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer’s disease. J neuroscience: official J Soc Neurosci 32(43):15112–15123. https://doi.org/10.1523/JNEUROSCI.1729-12.2012

    Article  CAS  Google Scholar 

  75. Hoozemans JJM, van Haastert ES, Mulder SD, Nielsen HM, Veerhuis R, Ruijtenbeek R, Rozemuller AJM, Hilhorst R, van der Vies SM (2014) Increased IRAK-4 kinase activity in Alzheimer’s Disease; IRAK-1/4 inhibitor I prevents pro-inflammatory cytokine secretion but not the uptake of amyloid Beta by primary human glia. Journal of Clinical & Cellular Immunology 5(4) [243]. https://doi.org/10.4172/2155-9899.1000243

  76. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108(10):4194–4199. https://doi.org/10.1073/pnas.1100976108

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Lee J, Masliah S, Hwang E, Lee D, H. J., Lee SJ (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. https://doi.org/10.1038/ncomms2534

    Article  CAS  PubMed  Google Scholar 

  78. Kim C, Rockenstein E, Spencer B, Kim HK, Adame A, Trejo M, Stafa K, Lee HJ, Lee SJ, Masliah E (2015) Antagonizing neuronal toll-like receptor 2 prevents Synucleinopathy by activating Autophagy. Cell Rep 13(4):771–782. https://doi.org/10.1016/j.celrep.2015.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1–2):17–20. https://doi.org/10.1016/0304-3940(95)12192-7

    Article  CAS  PubMed  Google Scholar 

  80. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2):147–150. https://doi.org/10.1016/0304-3940(94)90508-8

    Article  CAS  PubMed  Google Scholar 

  81. Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131(Pt 7):1880–1894. https://doi.org/10.1093/brain/awn101

    Article  PubMed  Google Scholar 

  82. Chiang EY, Yu X, Grogan JL (2011) Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. J Immunol (Baltimore Md: 1950) 186(2):1279–1288. https://doi.org/10.4049/jimmunol.1002821

    Article  CAS  Google Scholar 

  83. Qin J, Jiang Z, Qian Y, Casanova JL, Li X (2004) IRAK-4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem 279(25):26748–26753. https://doi.org/10.1074/jbc.M400785200

    Article  CAS  PubMed  Google Scholar 

  84. Cushing L, Stochaj W, Siegel M, Czerwinski R, Dower K, Wright Q, Hirschfield M, Casanova JL, Picard C, Puel A, Lin LL, Rao VR (2014) Interleukin 1/Toll-like receptor-induced autophosphorylation activates interleukin 1 receptor-associated kinase 4 and controls cytokine induction in a cell type-specific manner. J Biol Chem 289(15):10865–10875. https://doi.org/10.1074/jbc.M113.544809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC (2009) IRAK-4 inhibitors for inflammation. Curr Top Med Chem 9(8):724–737. https://doi.org/10.2174/156802609789044407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and Regulation. Annu Rev Biochem 86:129–157. https://doi.org/10.1146/annurev-biochem-060815-014922

    Article  CAS  PubMed  Google Scholar 

  87. Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14(6):369–381. https://doi.org/10.1038/nrm3582

    Article  CAS  PubMed  Google Scholar 

  88. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98(15):8554–8559. https://doi.org/10.1073/pnas.141230798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schneekloth JS, Jr, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126(12):3748–3754. https://doi.org/10.1021/ja039025z

    Article  CAS  PubMed  Google Scholar 

  90. Mullard A (2021) Targeted protein degraders crowd into the clinic. Nature Reviews Drug Discovery, 20(4), 247–250 https://doi.org/10.1038/d41573-021-00052-4)

  91. Kelleher J, Campbell V, Chen J, Gollob J, Ji N, Kamadurai H, Klaus C, Li H, Loh C, McDonald A, Rong H, Rusin S, Sharma K, Vigil D, Walker D, Weiss M, Yuan K, Zhang Y, Mainolfi N (2019) KYM-001, a first-in-class oral IRAK-4 protein degrader, induces tumor regression in xenograft models of myd88-mutant ABC DLBCL alone and in combination with BTK inhibition. Hematol Oncol 37:129–129. https://doi.org/10.1002/hon.89_2629

    Article  Google Scholar 

  92. Nunes J, McGonagle GA, Eden J, Kiritharan G, Touzet M, Lewell X, Emery J, Eidam H, Harling JD, Anderson NA (2019) Targeting IRAK-4 for degradation with PROTACs. ACS Med Chem Lett 10(7):1081–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M (2017) A method for the Acute and Rapid Degradation of endogenous proteins. Cell 171(7):1692–1706e18. https://doi.org/10.1016/j.cell.2017.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato A, Akaike T, Itto-Nakama K, Arimoto H (2019) AUTACs: Cargo-Specific Degraders using selective autophagy. Mol Cell 76(5):797–810e10. https://doi.org/10.1016/j.molcel.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  95. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  96. Ding Y, Fei Y, Lu B (2020) Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci 41(7):464–474. https://doi.org/10.1016/j.tips.2020.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Sci (New York N Y) 306(5698):1037–1040. https://doi.org/10.1126/science.1103966

    Article  CAS  Google Scholar 

  98. Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S, Ihara H, Kobayashi A, Yamamoto M, Fujii S, Arimoto H, Akaike T (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3’,5’-cyclic monophosphate. Nat Chem Biol 3(11):727–735. https://doi.org/10.1038/nchembio.2007.33

    Article  CAS  PubMed  Google Scholar 

  99. Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., Ma, L., Gao, C., Yang, Y., Sun,Y., Wang, J., Sun, X., Lu, C., Difiglia, M., Mei, Y., Ding, C., Luo, S., Dang, Y.,Ding, Y., Fei, Y., … Lu, B. (2019). Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature, 575(7781), 203–209. https://doi.org/10.1038/s41586-019-1722-1

  100. Zhang H, An P, Fei Y, Lu B (2021) Modeling the Degradation Effects of Autophagosome Tethering Compounds. Neurosci Bull 37(2):255–260. https://doi.org/10.1007/s12264-020-00574-8

    Article  CAS  PubMed  Google Scholar 

  101. Li Z, Zhu C, Ding Y, Fei Y, Lu B (2020) ATTEC: a potential new approach to target proteinopathies. Autophagy 16(1):185–187. https://doi.org/10.1080/15548627.2019.1688556

    Article  CAS  PubMed  Google Scholar 

  102. Walker FO (2007) Huntington’s disease. Lancet (London England) 369(9557):218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  PubMed  Google Scholar 

  103. Gao H, Sun X, Rao Y (2020) PROTAC Technology: Opportunities and Challenges. ACS Med Chem Lett 11(3):237–240. https://doi.org/10.1021/acsmedchemlett.9b00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Shirumalla.

Ethics declarations

Disclosure of potential conflicts of interest

Himanshu Yadav and Raj K. Shirumalla declare no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, H., Shirumalla, R. Emerging trends in IRAK-4 kinase research. Mol Biol Rep 50, 7825–7837 (2023). https://doi.org/10.1007/s11033-023-08438-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08438-w

Keywords

Navigation