Skip to main content
Log in

Cloning and functional analysis of GhDFR1, a key gene of flavonoid synthesis pathway in naturally colored cotton

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway.

Methods

The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology.

Results

Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers.

Conclusion

GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun N, Xie YF, Wu Y, Guo N, Li DH, Gao JS (2021) Genome-wide identification of ABCC gene family and their expression analysis in pigment deposition of fiber in brown cotton (Gossypium hirsutum). PLoS ONE 16:e0246649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang LX, Liu HF, Li XY, Xiao XW, Ai XT, Luo C, Zhu LH, Li XB (2014) Genetic mapping of fiber color genes on two brown cotton cultivars in Xinjiang. Springerplus 3:480

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li YJ, Zhang XY, Wang FX, Yang CL, Liu F, Xia GX, Sun J (2013) A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J Proteom 18:374–388

    Article  Google Scholar 

  4. Gilbert MK, Bland JM, Shockey JM, Cao HP, Hinchliffe DJ, Fang DD, Naoumkina M (2013) A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L). PLoS ONE 8:e75268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang ZZ, Zhang XM, He SP, Rehman A, Jia YH, Li HG, Pan ZE, Geng XL, Gao Q, Wang LR, Peng Z, Du XM (2022) Transcriptome co-expression network and metabolome analysis identifies key genes and regulators of proanthocyanidins biosynthesis in brown cotton. Front Plant Sci 12:822198

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu HF, Luo C, Song W, Shen HT, Li GL, He ZG, Chen WG, Cao YY, Huang F, Tang SW, Hong P, Zhao EF, Zhu JB, He DJ, Wang SM, Huo GY, Liu HL (2018) Flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ 6:e4537

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun J, Sun YQ, Zhu QH (2021) Breeding next-generation naturally colored cotton. Trends Plant Sci 26:539–542

    Article  CAS  PubMed  Google Scholar 

  8. Feng HJ, Li YJ, Wang SF, Zhang LL, Liu YC, Xue F, Sun YQ, Wang YM, Sun J (2014) Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fiber (Gossypium hirsuntum L). J Exp Bot 65:5759–5769

    Article  CAS  PubMed  Google Scholar 

  9. Sun SC, Xiong XP, Zhu QH, Li YJ, Sun J (2019) Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. Int J Mol Sci 20:4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wen TW, Wu M, Shen C, Gao B, Zhu D, Zhang XL, You CY, Lin ZX (2018) Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J 16:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ke LP, Yu DL, Zheng HL, Xu YH, Wu YQ, Jiao JY, Wang XL, Mei J, Cai FF, Zhao YY, Sun J, Zhang XL, Sun YQ (2022) Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). Plant Biotechnol J 20:1546–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan Q, Wang Y, Li Q, Zhang ZS, Ding H, Zhang Y, Liu HS, Luo M, Liu DX, Song W, Liu HF, Yao D, Ouyang XF, Li YH, Li X, Pei Y, Xiao YH (2018) Up-regulation of GhTT2-3A in cotton fibers during secondary wall thickening results in brown fibers with improved quality. Plant Biotechnol J 16:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li ZH, Su Q, Xu MQ, You JQ, Khan AQ, Li JY, Zhang XL, Tu LL, You CY (2020) Phenylpropanoid metabolism and pigmentation show divergent patterns between brown color and green color cottons as revealed by metabolic and gene expression analyses. J Cotton Res 3:5–15

    Article  CAS  Google Scholar 

  14. Zhang AA, Zheng J, Chen XM, Shi XY, Wang HS, Fu QS (2021) Comprehensive analysis of transcriptome and metabolome reveals the flavonoid metabolic pathway is associated with fruit peel coloration of melon. Molecules 26:2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen WF, Zhang MX, Zhang GJ, Li PM, Ma FW (2019) Differential regulation of anthocyanin synthesis in apple peel under different sunlight intensities. Int J Mol Sci 20:6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu MY, Yang X, Zheng JR, Wang L, Yang XY, T Y, Ye JB, Zhang WW, Liao YL, Cheng SY, Xu F (2021) Unraveling the regulatory mechanism of color diversity in Camellia japonica petals by integrative transcriptome and metabolome analysis. Front Plant Sci 12:685136

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kastu K, Suzuki R, Tsuchiya W, Inagaki N, Yanmazaki T, Hisano T, Yasui Y, Komori T, Koshio M, Kubota S, Walker AR, Furukawa K, Matsui K (2017) A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity. BMC Plant Biol 17:239

    Article  Google Scholar 

  18. Nitarska D, Stefanini C, Haselmair-Gosch C, Miosic S, Walliser B, Mikulic-Petkovsek M, Regos I, Slatnar A, Debener T, Terefe-Ayana D, Vilperte V, Hadersdorfer J, Stich K, Halbwirth H (2018) The rare orange-red colored Euphorbia pulcherrima cultivar ‘Harvest Orange’ shows a nonsense mutation in a flavonoid 3′-hydroxylase allele expressed in the bracts. BMC Plant Biol 18:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahad A, Ahmad A, Din SU, Rao AQ, Shahid A, Husnain T (2005) In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers. Front Plant Sci 6:751

    Google Scholar 

  20. Hewarathna A, Mozziconacci O, Nariya MK, Kleindl PA, Xiong J, Fisher AC, Joshi SB, Middaugh CR, Forrest ML, Volkin DB, Deeds EJ, Schöneich C (2017) Chemical stability of the botanical drug substance crofelemer: a model system for comparative characterization of complex mixture drugs. J Pharm Sci 106:3257–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia Y, Li B, Zhang YJ, Zhang XQ, Xu YH, Li CD (2019) Evolutionary dynamic analyses on monocot flavonoid 3′-hydroxylase gene family reveal evidence of plant-environment interaction. BMC Plant Biol 19:347

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haselmair-Gosch C, Miosic S, Nitarska D, Roth BL, Walliser B, Paltram R, Lucaciu RC, Eidenberger L, Rattei T, Olbricht K, Stich K, Halbwirth H (2018) Great cause-small effect: undeclared genetically engineered orange petunias harbor an inefficient dihydroflavonol 4-reductase. Front Plant Sci 9:149

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen XF, Liu WL, Huang XY, Fu HH, Wang QX, Wang YF, Cao JG (2020) Arg-type dihydroflavonol 4-reductase genes from the fern dryopteris erythrosora play important roles in the biosynthesis of anthocyanins. PLoS ONE 15:e0232090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miosic S, Thill J, Milosevic M, Gosch C, Pober S, Molitor C, Ejaz S, Rompel A, Stich K, Halbwirth H (2014) Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species. PLoS ONE 9:e112707

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang HX, Fan WJ, Li H, Yang J, Huang JR, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS ONE 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J 25:325–333

    Article  CAS  PubMed  Google Scholar 

  27. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  PubMed  Google Scholar 

  28. Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Peng QZ, Li KG, Xie DY (2018) Molecular cloning and functional characterization of a dihydroflavonol 4-reductase from Vitis bellula. Molecules 23:861

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Gou JQ, Jia ZC, Yang L, Sun YM, Xiao XY, Song F, Luo KM (2012) Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. PLoS ONE 7:e30364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim SH, Park B, Kim DH, Park S, Yang JH, Jung JA, Lee J, Lee JY (2020) Cloning and functional characterization of dihydroflavonol 4-reductase gene involved in anthocyanin biosynthesis of Chrysanthemum. Int J Mol Sci 21:7960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol 134:979–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tan JF, Tu LL, Deng FL, Hu HY, Nie YC, Zhang XL (2013) A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol 162:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun YJ, Zhang DD, Zheng HL, Wu YQ, Mei J, Ke LP, Yu DL, Sun YQ (2022) Biochemical and expression analyses revealed the involvement of proanthocyanidins and/or their derivatives in fiber pigmentation of Gossypium stocksii. Int J Mol Sci 23:1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aida R, Yoshida K, Kondo T, Kishimoto S, Shibata M (2000) Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci 160:49–56

    Article  CAS  PubMed  Google Scholar 

  36. Lv LM, Zuo DY, Wang XF, Cheng HL, Zhang YP, Wang QL, Song GL, Ma ZY (2021) Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biol 20:223

    Article  Google Scholar 

  37. Zhao JY, Wang P, Gao WJ, Long YL, Wang YX, Geng SW, Su XN, Jiao Y, Chen QJ, Qu YY (2021) Genome-wide identification of the DUF668 gene family in cotton and expression profiling analysis of GhDUF668 in Gossypium hirsutum under adverse stress. BMC Genomics 22:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nian LL, Liu XL, Yang YB, Zhu XL, Yi XF, Haider FU (2021) Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS ONE 16:e0252213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Q, Zhou W, Li B, Li L, Fu M, Zhou L, Yu XD, Wang DH, Wang ZZ (2021) Genome-wide analysis and the expression pattern of the ERF gene family in Hypericum perforatum. Plants (Basel) 10:133

    Article  CAS  PubMed  Google Scholar 

  40. Sonah H, Deshmukh RK, Labbé C, Bélanger RR (2017) Analysis of aquaporins in brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7:2771

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zheng HL, Wang RJ, Jiang QM, Zhang DD, Mu RR, Xu YH, Nnaemeka VE, Mei J, Zhao YY, Cai FF, Yu DL, Sun YQ, Ke LP (2021) Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L. Theor Appl Genet 134:3237–3247

    Article  CAS  PubMed  Google Scholar 

  42. Gao JF, Shen L, Yuan JL, Zheng HL, Su QS, Yang WG, Zhang LQ, Nnaemka VE, Sun J, Ke LP, Sun YQ (2019) Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC Plant Biol 19:455

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gu ZH, Huang CJ, Li FF, Zhou XP (2014) A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J 12:638–649

    Article  CAS  PubMed  Google Scholar 

  44. Fu WF, Shen Y, Hao J, Wu JY, Ke LP, Wu CY, Huang K, Luo BL, Xu MF, Cheng XF, Zhou XP, Sun J, Xing CZ, Sun YQ (2015) Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 5:11790

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Zhu Y, Wang P, Fan Q, Wu Y, Peng QZ, Xia GX, Wu JH (2016) Functional characterization of a dihydroflavanol 4-reductase from the fiber of upland cotton (Gossypium hirsutum). Molecules 21:32

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zheng HL, Duan BL, Yuan B, Chen ZB, Yu DL, Ke LP, Zhou WL, Liu HF, Sun YQ (2022) Flavanone and flavonoid hydroxylase genes regulate fiber color formation in naturally colored cotton. Crop J. https://doi.org/10.1016/j.cj.2022.10.004

    Article  Google Scholar 

  47. Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320

    Article  CAS  PubMed  Google Scholar 

  48. Han LB, Li YB, Wang HY, Wu XM, Li CL, Luo M, Wu SJ, Kong ZS, Pei Y, Jiao GL, Xia GX (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25:4421–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LZ21C130004) and the National Natural Science Foundation of China (Grant No. U1903204).

Author information

Authors and Affiliations

Authors

Contributions

HZ conducted experiments and wrote the manuscript; JJ and QN took photos and sampling; NZ and YS analyzed the data; ST and HL provided methodology and project administration. LK and YS provided funding, wrote and revised the manuscript. All authors read and agreed to the submitted version of the manuscript.

Corresponding authors

Correspondence to Haifeng Liu or Yuqiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

This is an observational study, and this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1335 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Jiao, J., Niu, Q. et al. Cloning and functional analysis of GhDFR1, a key gene of flavonoid synthesis pathway in naturally colored cotton. Mol Biol Rep 50, 4865–4873 (2023). https://doi.org/10.1007/s11033-023-08420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08420-6

Keywords

Navigation