Skip to main content
Log in

Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level.

Abstract

Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Male sterility

ROS:

Reactive oxygen species

CMS:

Cytoplasmic male sterility

GMS:

Genic male sterility

PCD:

Programmed cell death

H2O2 :

Hydrogen peroxide

GLPs:

Germin-like proteins

SOD:

Superoxide dismutase

OXO:

Oxalate oxidase

AGPPase:

ADP glucose pyrophosphatase or phosphodiesterase

qRT-PCR:

Quantitative real-time PCR

PDS:

Phytoene desaturase

CTAB:

Cetyltriethylammnonium bromide

TTC:

2,3,5-Triphenylterazolium chloride

NBT:

Nitroblue tetrazolium chloride

ETC:

Mitochondrial electron transport chain

VIGS:

Virus-induced gene silencing

References

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Gantait S, Maiti MK (2017) Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. Plant Cell Tiss Organ Cult 131(1):127–137

    Article  CAS  Google Scholar 

  • Bruno L, Spadafora ND, Laria D, Chiappetta A, Bitonti MB (2014) Developmental stimuli and stress factors affect expression of ClGLP1, an emerging allergen-related gene in Citrus limon. Plant Physiol Biochem 79:31–40

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324(6):543–550

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Pedersen O (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Guo L, Xing C, Wu J, Qi Y, Wang H, Tang H, Qiao X (2014) Genetic effects and heterosis of three-line hybrid cotton in different ecological environments. Cotton Sci 26(1):1–9

    Google Scholar 

  • El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61(6):1761–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu W, Shen Y, Hao J, Wu J, Ke L, Wu C, Huang K, Luo B, Xu M, Cheng X, Zhou X, Sun J, Xing C, Sun Y (2015) Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 5(11790):30

    Google Scholar 

  • Fu J, Wang X, Mao T, Cheng H, Chen F, Yang Y (2018) Identification and functional analysis of germin-like protein gene family in tea plant (Camellia sinensis). Sci Hor 234:166–175

    Article  CAS  Google Scholar 

  • Gao J, Shen L, Yuan J, Zheng H, Su Q, Yang W, Zhang L, Nnaemeka VE, Sun J, Ke L, Sun Y (2019) Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC Plant Biol 19:455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Z, Huang C, Li F, Zhou X (2014) A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J 12(5):638–649

    Article  CAS  PubMed  Google Scholar 

  • Gucciardo S, Wisniewski J, Brewin N, Bornemann S (2007) A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Exp Bot 58(5):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Xie Y, Zhou X (2009) Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol J 7(3):254–265

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Huang W, Yin C, Gong Z (2013) Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6–2 genes. Int J Mol Sci 14(1):1050–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218(4):516–524

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Liu D, Liao X, Zheng J, Diao Y, Zhou R (2017) Comparative analysis of the cytology and transcriptomes of the cytoplasmic male sterility line H276A and its maintainer line H276B of cotton (Gossypium barbadense L.). Int J Mol Sci 18(11):2240

    Article  PubMed Central  CAS  Google Scholar 

  • Kubo T, Kitazaki K, Matsunaga M, Kagami H, Mikami T (2011) Male sterility-inducing mitochondrial genomes: how do they differ? Crit Rev Plant Sci 30(4):378–400

    Article  CAS  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiology and biochemistry experiments. Higher Education Press, pp 267–268

    Google Scholar 

  • Li Z (2017) Progress and prospect of cotton breeding in China for 60 years. Acta Agric Borea Occident Sin 26(12):1732–1753

    Google Scholar 

  • Li H, Jiang J, Wang S, Liu F (2010) Expression analysis of ThGLP, a new germin-like protein gene, tamarix hispida. J For Res 21(3):323–330

    Article  CAS  Google Scholar 

  • Lu M, Han Y, Gao J, Wang X, Li W (2010) Identification and analysis of the germin-like gene family in soybean. BMC Genom 12(1):16

    Article  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot (lond) 107:1335–1343

    Article  CAS  Google Scholar 

  • Pei Y, Li X, Zhu Y, Ge X, Sun Y, Liu N, Jia Y, Li F, Hou Y (2019) GhABP19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to verticillium and fusarium wilt pathogens. Front Plant Sci 10:583

    Article  PubMed  PubMed Central  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174(4):742–751

    Article  PubMed  CAS  Google Scholar 

  • Pucciariello C, Perata P (2017) New insights into reactive oxygen species and nitric oxide signaling under low oxygen in plants. Plant Cell Environ 40:473–482

    Article  CAS  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Bernsdorff FE, Cai D (2012) Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. J Exp Bot 63(15):5507–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhy V, Khadi BM, Singh P, Vijaya Kumari PR, Deshmukh RK, Vishwanathan A (2008) Hybrid seed production in cotton. CICR Tech Bull 35 http://www.cicr.org.in/

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    Article  PubMed  Google Scholar 

  • Singh S, Singh P, Mayee CD (2002) Male sterility in cotton. CICR Tech Bull 24 http://www.cicr.org.in/

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Steffen-Heins A, Sauter M (2013) Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci 4:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Li S, Wen L, Kong J, Wang K, Zhu Y (2007) Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Rep 26(3):373–382

  • Wang F, Feng C, O’Connell MA, Stewart JM, Zhang J (2010a) RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton. Euphytica 172(1):93–99

    Article  CAS  Google Scholar 

  • Wang L, Wang X, Liu J, Yi Z, Dong Z (2010b) Research on oxilate oxidase and its gene in plant. Chin Agric Sci Bull 26(7):48–51

    Google Scholar 

  • Wang T, Chen X, Zhu F, Li H, Yang Q, Chi X, Yu S, Liang X (2013) Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One 8(4):e61722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Gong Y, Cui M, Qi T, Guo L, Zhang J, Xing C (2011) Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. Euphytica 181(1):17–29

    Article  CAS  Google Scholar 

  • Wu J, Cao X, Guo L, Qi T, Wang H, Tang H, Xing C (2014) Development of a candidate gene marker for Rf1 based on a PPR gene in cytoplasmic male sterile CMS-D2 upland cotton. Mol Breed 34(1):231–240

    Article  CAS  Google Scholar 

  • Wu J, Zhang M, Zhang B, Zhang X, Guo L, Qi T, Wang H, Zhang J, Xing C (2017) Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. BMC Genom 18(1):454

    Article  CAS  Google Scholar 

  • Xing C, Guo L, Li W, Wu J, Yang D, Qi Y, Ma X, Zhang X (2017) 10-year achievements and future development of cotton heterosis utilization. Cotton Sci 29(S1):3–16

    Google Scholar 

  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J Exp Bot 65:261–273

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M (2017) An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell 29(4):775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wu Y, Zhang M, Zhang J, Stewart JM, Xing C, Wu J, Jin S (2018) Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. Plant Mol Biol 97(6):537–551

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to phytophthora infestans. Plant Cell 15(3):706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Yuan H, Cheng L, Zhao D, Chen J, Wu J, Zhang S, Wu G (2017) Cloning and expression analysis of LuGLP1-13 gene of flax. Plant Fiber Sci China 39(1):12–18

    Google Scholar 

  • Zhang X, Meng Z, Zhou T, Sun G, Shi J, Yu Y, Guo S (2012) Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Plant Breed 131(4):563–570

    Article  CAS  Google Scholar 

  • Zhang M, Guo L, Qi T, Zhang X, Tang H, Wang H, Qiao X, Zhang B, Feng J, Zuo Z, Li T, Kashif S, Wu J, Xing C (2019) Integrated methylome and transcriptome analysis between the CMS-D2 Line ZBA and its maintainer line ZB in upland cotton. Int J Mol Sci 20(23):6070

    Article  CAS  PubMed Central  Google Scholar 

  • Zimmermann G, Bäumlein H, Mock HP, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142(1):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (U1903204, 31671738). The funding agencies had no role in research design, data collection and analysis, or manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

YS and LK conceived and designed the experiments. HZ, RW, QJ, DZ and LK performed the research and prepared the figures; RM, YX, VEN, JM, YZ, FC and DY participated in data analysis. LK, HZ, YS and DY wrote and corrected the article. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Liping Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Thomas Lubberstedt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wang , R., Jiang , Q. et al. Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L.. Theor Appl Genet 134, 3237–3247 (2021). https://doi.org/10.1007/s00122-021-03888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03888-x

Navigation