Skip to main content
Log in

Molecular cloning and in silico analysis of chalcone isomerase from Polygonum minus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones.

Methods and results

In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified.

Conclusion

These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662. https://doi.org/10.1016/j.biotechadv.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  2. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. https://doi.org/10.1155/2013/162750

    Article  Google Scholar 

  3. Simkhada D, Kurumbang NP, Lee HC, Sohng JK (2010) Exploration of glycosylated flavonoids from metabolically engineered E. coli. Biotechnol Bioprocess Eng 15:754–760. https://doi.org/10.1007/s12257-010-0012-4

    Article  CAS  Google Scholar 

  4. Hossain MK, Dayem AA, Han J et al (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci. https://doi.org/10.3390/ijms17040569

    Article  Google Scholar 

  5. Shah FLA, Ramzi AB, Baharum SN et al (2019) Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep 46:6647–6659. https://doi.org/10.1007/s11033-019-05066-1

    Article  CAS  PubMed  Google Scholar 

  6. Kaneko M, Hwang EI, Ohnishi Y, Horinouchi S (2003) Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30:456–461. https://doi.org/10.1007/s10295-003-0061-1

    Article  CAS  PubMed  Google Scholar 

  7. Christapher P, Parasuraman S, Christina JA et al (2015) Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharmacogn Res 7:1. https://doi.org/10.4103/0974-8490.147125

    Article  CAS  Google Scholar 

  8. Rusdi NA, Goh HH, Baharum SN (2016) GC–MS/olfactometric characterisation and aroma extraction dilution analysis of aroma active compounds in Polygonum minus essential oil. Plant Omics 9:289–294. https://doi.org/10.21475/poj.16.09.04.p7901

    Article  CAS  Google Scholar 

  9. Rahnamaie-Tajadod R, Goh H-H, Mohd Noor N (2019) Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. J Plant Physiol 240:152994. https://doi.org/10.1016/j.jplph.2019.152994

    Article  CAS  PubMed  Google Scholar 

  10. Khairudin K, Sukiran NA, Goh H-H et al (2013) Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10:11306. https://doi.org/10.1007/s11306-013-0570-5

    Article  CAS  Google Scholar 

  11. Loke K-K, Rahnamaie-Tajadod R, Yeoh C-C et al (2017) Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 5:e2938. https://doi.org/10.7717/peerj.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goh H-H, Khairudin K, Sukiran NA et al (2016) Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biol 18:130–139. https://doi.org/10.1111/plb.12403

    Article  CAS  PubMed  Google Scholar 

  13. Loke KK, Rahnamaie-Tajadod R, Yeoh CC et al (2016) RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genomics Data 7:12–13. https://doi.org/10.1016/j.gdata.2015.11.003

    Article  PubMed  Google Scholar 

  14. Roslan ND, Tan C, Ismail I, Zainal Z (2013) cDNA cloning and expression analysis of the chalcone synthase gene (CHS) from Polygonum minus. Aust J Crop Sci 7:777–783

    CAS  Google Scholar 

  15. Guo J, Zhou W, Lu Z et al (2015) Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato. Plant Mol Biol Rep 33:1451–1463. https://doi.org/10.1007/s11105-014-0842-x

    Article  CAS  Google Scholar 

  16. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791. https://doi.org/10.1038/79025

    Article  CAS  PubMed  Google Scholar 

  17. Ren C, Tang X, Chen C et al (2019) Cloning and expression analysis of a new chalcone isomerase gene during flowering in safflower. Turk J Bot 43:143–150. https://doi.org/10.3906/bot-1809-25

    Article  CAS  Google Scholar 

  18. Chang AY, Chau VWY, Landas JA, Pang Y (2017) Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 1:22–25

    Google Scholar 

  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  21. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  22. Armenteros JJA, Salvatore M, Emanuelsson O et al (2019) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2:1–14. https://doi.org/10.26508/lsa.201900429

    Article  Google Scholar 

  23. Yu CS, Cheng CW, Su WC et al (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9:e99368. https://doi.org/10.1371/journal.pone.0099368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horton P, Park KJ, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:585–587. https://doi.org/10.1093/nar/gkm259

    Article  Google Scholar 

  25. Krieger E, Darden T, Nabuurs SB et al (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–683. https://doi.org/10.1002/prot.20251

    Article  CAS  PubMed  Google Scholar 

  26. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/s0021889892009944

    Article  CAS  Google Scholar 

  28. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99. https://doi.org/10.1016/S0022-2836(63)80023-6

    Article  CAS  PubMed  Google Scholar 

  29. Sun W, Meng X, Liang L et al (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrida in flavonoid biosynthetic pathway. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0119054

    Article  CAS  Google Scholar 

  30. Das P, Rawal SK (2016) Cloning, expression and purification of chalcone synthase from Solanum tuberosum. IOSR J Biotechnol Biochem 2(3):7–11

    Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  32. Mahmood T, Yang P-C (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4:429–434. https://doi.org/10.4103/1947-2714.100998

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng H, Li L, Cheng S et al (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62. https://doi.org/10.1007/s00299-010-0943-4

    Article  CAS  PubMed  Google Scholar 

  34. Park SH, Lee CW, Cho SM et al (2018) Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PLoS ONE 13:1–17. https://doi.org/10.1371/journal.pone.0192415

    Article  CAS  Google Scholar 

  35. Ku Bahaudin KNA, Ramzi AB, Baharum SN et al (2018) Current progress in production of flavonoids using systems and synthetic biology platforms. Sains Malays 47:3077–3084. https://doi.org/10.17576/jsm-2018-4712-18

    Article  CAS  Google Scholar 

  36. Yin YC, Zhang XD, Gao ZQ et al (2019) The research progress of chalcone isomerase (CHI) in plants. Mol Biotechnol 61:32–52. https://doi.org/10.1007/s12033-018-0130-3

    Article  CAS  PubMed  Google Scholar 

  37. Sun W, Shen H, Xu H et al (2019) Chalcone isomerase a key enzyme for anthocyanin biosynthesis in Ophiorrhiza japonica. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00865

    Article  Google Scholar 

  38. Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369. https://doi.org/10.1074/jbc.M109224200

    Article  CAS  PubMed  Google Scholar 

  39. Wan Q, Bai T, Liu M, Liu Y, Xie Y, Zhang T, Huang M, Zhang J (2022) Comparative analysis of the chalcone-flavanone isomerase genes in six citrus species and their expression analysis in sweet orange (Citrus sinensis). Front Genet 13:1–13. https://doi.org/10.3389/fgene.2022.848141

    Article  CAS  Google Scholar 

  40. Dixon RA, Richard Blyden E, Robbins MP et al (1988) Comparative biochemistry of chalcone isomerases. Phytochemistry 27:2801–2808. https://doi.org/10.1016/0031-9422(88)80666-6

    Article  CAS  Google Scholar 

  41. Guo D, Gao Y, Liu F et al (2019) Integrating molecular characterization and metabolites profile revealed CtCHI1’s significant role in Carthamus tinctorius L. BMC Plant Biol 19:1–13. https://doi.org/10.1186/s12870-019-1962-0

    Article  CAS  Google Scholar 

  42. Wang L, Liu X, Meng X et al (2018) Cloning and expression analysis of a chalcone isomerase (CnCHI) gene from Chamaemelum nobile. Biotechnology 17:19–25. https://doi.org/10.3923/biotech.2018.19.25

    Article  CAS  Google Scholar 

  43. Bednar RA, Hadcock JR (1998) Purification and characterization of chalcone isomerase from soybeans. J Biol Chem 273:30003–30011. https://doi.org/10.1074/jbc.273.45.30003

    Article  Google Scholar 

  44. Zhou X, Li J, Fan Z (2012) Cloning and expression analysis of chalcone isomerase gene cDNA from Camellia nitidissima. Forest Res Beijing 25(1):93–99

  45. Shahat AA, Marzouk MS (2013) 13—tannins and related compounds from medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 479–555

    Chapter  Google Scholar 

  46. Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41:5168–5176. https://doi.org/10.1021/bi0255266

    Article  CAS  PubMed  Google Scholar 

  47. Furumura S, Ozaki T, Sugawara A, Morishita Y, Tsukada K, Ikuta T, Inoue A, Asai T (2022) Identification and functional characterization of fungal chalcone synthase and chalcone isomerase. J Nat Prod 86:398–405. https://doi.org/10.1021/acs.jnatprod.2c01027

    Article  CAS  Google Scholar 

  48. Khor BY, Tye GJ, Lim TS et al (2014) The structure and dynamics of BmR1 protein from Brugia malayi: in silico approaches. Int J Mol Sci 15:11082–11099. https://doi.org/10.3390/ijms150611082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ngaki MN, Louie GV, Philippe RN et al (2012) Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485:530–533. https://doi.org/10.1038/nature11009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barh D, Barve N, Gupta K et al (2013) Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS ONE 8:e52773. https://doi.org/10.1371/journal.pone.0052773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. https://doi.org/10.1016/S0958-1669(99)00003-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fatin Lyana Azman Shah was supported by a scholarship from Jabatan Perkhidmatan Awam (JPA) Malaysia.

Funding

The work was supported through the Special Allocation for Agencies Under Academy of Science Malaysia-Ministry of Science, Technology and Innovation Grant (PKA0514F004, 6300824) and Universiti Putra Malaysia Putra Graduate Initiative (GP/IPS/2016/9482200).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a considerable, direct, and logical contribution to the work and approved it for publication. The experiments were designed by FLAS, SNB, HHG, TCL, ABR, SNO and SS. FLAS and SS drafted the manuscript. All authors discussed the results, edited the manuscript, and approved the final version.

Corresponding author

Correspondence to Suriana Sabri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 159 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, F.L.A., Baharum, S.N., Goh, HH. et al. Molecular cloning and in silico analysis of chalcone isomerase from Polygonum minus. Mol Biol Rep 50, 5283–5294 (2023). https://doi.org/10.1007/s11033-023-08417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08417-1

Keywords

Navigation