Skip to main content
Log in

Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments.

Methods and results

Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL−1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629–1647, 1633 & 1635–1643, and 1638–1633 cm−1) corresponding to specific amide groups due to C = O stretching.

Conclusion

The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data related to article is available in manuscript.

Abbreviations

FTIR:

Fourier transform infrared

CRA:

Congo red assay

BL:

Black liquor

EPS:

Extra polysaccharide

DNA:

Deoxyribonucleic acid

rRNA:

Ribosomal ribonucleic acid

OD:

Optical density

UV:

Ultraviolet

U/µL:

Unit per microliter

(cm 1):

Reciprocal centimetre

ANOVA:

Analysis of variance

SEM:

Standard error of the mean

Rpm:

Revolution per minute

References

  1. Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S (2022) Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 294:133609. https://doi.org/10.1016/j.chemosphere.2022.133609

    Article  CAS  PubMed  Google Scholar 

  2. Jasu A, Ray RR (2021) Biofilm mediated strategies to mitigate heavy metal pollution: a critical review in metal bioremediation. Biocatal Agric Biotechnol 37:102183. https://doi.org/10.1016/j.bcab.2021.102183

    Article  CAS  Google Scholar 

  3. Arora NK, Chauhan R (2021) Heavy metal toxicity and sustainable interventions for their decontamination. Springer, pp 1–3

    Google Scholar 

  4. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishra S, Chen S, Saratale GD, Saratale RG, Romanholo Ferreira LF, Bilal M, Bharagava RN (2021) Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products. Water Process Eng 39:101748. https://doi.org/10.1016/j.jwpe.2020.101748

    Article  Google Scholar 

  6. Hussain M, Liaqat I, Bukhari SM, Khan FS, Adalat R, Salman Shafique M, Azam SM, Ali A, Khalid M, Shahid Z, Iqbal MJ, Slahuddin EA (2023) The impact of cow dung augmentation on soil restoration and bio-accumulation of metals (Lead and Cadmium) in Pheretima posthuma (Annelida: Clitellata). Braz J Bio 83:e247562

    Article  Google Scholar 

  7. Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2018) Microalgae–bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Appl Microbiol Biotechnol 102:1131–1144. https://doi.org/10.1007/s00253-017-8693-7

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S (2022) Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2022.2106417

    Article  PubMed  Google Scholar 

  9. Mohapatra RK, Behera SS, Patra JK, Thatoi H, Parhi PK (2020) Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier, pp 267–281

    Chapter  Google Scholar 

  10. Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J Bioremediat Biodegrad 7:2. https://doi.org/10.4172/2155-6199.1000370

    Article  CAS  Google Scholar 

  11. Sandhya M, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S (2022) Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.133609

    Article  Google Scholar 

  12. Uzor OS, Okpokwasili GC, Agbagwa EO (2020) Bacteriological and physicochemical profiles of soils in selected oil-contaminated sites in Yorla, Ogoni Land. Microbiol Res J Int 30:104–117. https://doi.org/10.9734/MRJI/2020/v30i830256

    Article  Google Scholar 

  13. Liaqat I, Mirza SA, Iqbal R, Ali NM, Saleem G, Majid S, Shahid M (2018) Flagellar motility plays important role in Biofilm formation of Bacillus cereus and Yersinia enterocolitica. Pak J Pharm Sci 31:2047

    CAS  PubMed  Google Scholar 

  14. Rathore DS, Sheikh MA, Gohel SD, Singh SP (2021) Genetic and phenotypic heterogeneity of the Nocardiopsis alba strains of seawater. Curr Microbiol 78:1377–1387. https://doi.org/10.1007/s00284-021-02420-0

    Article  CAS  PubMed  Google Scholar 

  15. Liaqat I, Muhammad N, Mubin M, Arshad N, Iftikhar T, Sajjad S, Rashid F (2022) Antibacterial and larvicidal activity of ethyl acetate extract of actinomycetes from soil samples. Pak J Zool. https://doi.org/10.17582/journal.pjz/20200526130518

    Article  Google Scholar 

  16. Grujić S, Vasić S, Radojević I, Čomić L, Ostojić A (2017) Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential. Water Air Soil Pollut 228:1–8. https://doi.org/10.1007/s11270-017-3259-y

    Article  CAS  Google Scholar 

  17. Dutta S, Hossain M, Hassan M, Anwar M (2014) Decolourization of two industrial dyes by bacteria from paper and pulp mill effluents. Int Res J Biol Sci 3:51–55

    Google Scholar 

  18. Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S (2021) Plasmid-mediated catabolism for the removal of xenobiotics from the environment. J Hazard Mater 420:126618. https://doi.org/10.1016/j.jhazmat.2021.126618

    Article  CAS  PubMed  Google Scholar 

  19. Araújo AR, Araújo AC, Reis RL, Pires RA (2021) Vescalagin and castalagin present bactericidal activity toward methicillin-resistant bacteria. ACS Biomater Sci Eng 7:1022–1030. https://doi.org/10.1021/acsbiomaterials.0c01698?ref=pdf

    Article  PubMed  Google Scholar 

  20. Nazli F, Jamil M, Hussain A, Hussain T (2020) Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals. Environ Monit Assess 192:1–16. https://doi.org/10.1007/s10661-020-08715-2

    Article  CAS  Google Scholar 

  21. O’Toole GA (2016) Classic spotlight: how the gram stain works. J Bacteriol 198:3128. https://doi.org/10.1128/JB.00726-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hussain T, Roohi A, Munir S, Ahmed I, Khan J, Edel-Hermann V, Yong Kim K, Anees M (2013) Biochemical characterization and identification of bacterial strains isolated from drinking water sources of Kohat, Pakistan. Afr J Microbiol Res 7:1579–1590. https://doi.org/10.5897/AJMR12.2204

    Article  CAS  Google Scholar 

  23. Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL (2020) Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci Afr 8:e00279. https://doi.org/10.1016/j.sciaf.2020.e00279

    Article  Google Scholar 

  24. Parker AD (2021) A Comparison of metagenomic sequencing using targeted 16S and whole genome shotgun NGS on microbial DNA samples. Montclair State University

    Google Scholar 

  25. Raag Harshavardhan P, Subbaiyan A, Vasavi U, Thirumoorthy P, Periyasamy M, Jesteena Johney J, Ragunathan R, Pichaipillai S, Velusamy S, Balamoorthy D (2022) Enhanced biodegradation of battery-contaminated soil using Bacillus sp. (mz959824) and its phytotoxicity study. Adv Mater Sci Eng. https://doi.org/10.1155/2022/5697465

    Article  Google Scholar 

  26. Idris MG, Umaru D, Aliyu AN, Musa IH (2022) Atomic absorption spectroscopy analysis of heavy metals in water at Daura Gypsum Mining Site, Yobe State, Nigeria. J Found Appli Phy 8:227–234

    Google Scholar 

  27. Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egypt J Aquat Res 43:65–74. https://doi.org/10.1016/j.ejar.2016.11.002

    Article  Google Scholar 

  28. Kalaimurugan D, Balamuralikrishnan B, Durairaj K, Vasudhevan P, Shivakumar M, Kaul T, Chang S, Ravindran B, Venkatesan S (2020) Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int J Environ Sci Technol 17:1455–1462. https://doi.org/10.1007/s13762-019-02563-5

    Article  CAS  Google Scholar 

  29. Sedlakova-Kadukova J, Kopcakova A, Gresakova L, Godany A, Pristas P (2019) Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol Environ Saf 167:204–211. https://doi.org/10.1016/j.ecoenv.2018.09.123

    Article  CAS  PubMed  Google Scholar 

  30. Forough S, Kumarss A, Azam H, Mohaddeseh L (2022) Application of Saccharomyces cerevisiae isolated from industrial effluent for zinc biosorption and zinc-enriched SCP production for human and animal. Food Sci Technol. https://doi.org/10.1590/fst.82021

    Article  Google Scholar 

  31. Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418:126253. https://doi.org/10.1016/j.jhazmat.2021.126253

    Article  CAS  PubMed  Google Scholar 

  32. Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8:1–10. https://doi.org/10.1007/s13201-018-0796-5

    Article  CAS  Google Scholar 

  33. Fathollahi A, Khasteganan N, Coupe SJ, Newman AP (2021) A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere 268:129290. https://doi.org/10.1016/j.chemosphere.2020.129290

    Article  CAS  PubMed  Google Scholar 

  34. Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H (2020) Bioreduction and biosorption of Cr (VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater 386:121628. https://doi.org/10.1016/j.jhazmat.2019.121628

    Article  CAS  PubMed  Google Scholar 

  35. Princy S, Prabagaran SR (2022) Reduction of Cr (VI) by Bacillus species isolated from tannery effluent contaminated sites of Tamil Nadu, India. Mater Today Proc 48:148–154. https://doi.org/10.1016/j.matpr.2020.04.850

    Article  CAS  Google Scholar 

  36. Huang F, Wang ZH, Cai YX, Chen SH, Tian JH, Cai KZ (2018) Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicol Environ Saf 157:216–226. https://doi.org/10.1016/j.ecoenv.2018.03.077

    Article  CAS  PubMed  Google Scholar 

  37. Kumar A, Chandra R (2021) Biodegradation and toxicity reduction of pulp paper mill wastewater by isolated laccase producing Bacillus cereus AKRC03. Chem Eng Technol 4:100193. https://doi.org/10.1016/j.clet.2021.100193

    Article  Google Scholar 

  38. Wang Y, Chen X, Wu B, Ma T, Jiang H, Mi Y, Jiang C, Zang H, Zhao X, Li C (2022) Potential and mechanism for bioremediation of papermaking black liquor by a psychrotrophic lignin-degrading bacterium, Arthrobacter sp. C2. J Hazard Mater 439:129534. https://doi.org/10.1016/j.jhazmat.2022.129534

    Article  CAS  PubMed  Google Scholar 

  39. Raj A, Kumar S, Haq I, Singh SK (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362. https://doi.org/10.1016/j.ecoleng.2014.07.002

    Article  Google Scholar 

  40. Arusha PN, Kiran RK, Shanti GG, Arun SK (2016) Optimization of cellulase production for Bacillus sp. and Pseudomonas sp. soil isolates. Afr J Microbiol Res 10:410–419. https://doi.org/10.5897/AJMR2016.7954

    Article  CAS  Google Scholar 

  41. An X, Zhong B, Chen G, An W, Xia X, Li H, Lai F, Zhang Q (2021) Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M. J Hazard Mater 406:124285. https://doi.org/10.1016/j.jhazmat.2020.124285

    Article  CAS  PubMed  Google Scholar 

  42. Shabbir S, Faheem M, Ali N, Kerr PG, Wu Y (2017) Periphyton biofilms: a novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. Chemosphere 167:236–246. https://doi.org/10.1016/j.chemosphere.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Díaz A, Marrero J, Cabrera G, Coto O, Gómez J (2022) Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems. Biodegradation 33:33–43. https://doi.org/10.1007/s10532-021-09964-9

    Article  CAS  PubMed  Google Scholar 

  44. Rodríguez-Sánchez V, Guzmán-Moreno J, Rodríguez-González V, Flores-de la Torre JA, Ramírez-Santoyo RM, Vidales-Rodríguez LE (2017) Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J Microbiol Biotechnol 33:1–11. https://doi.org/10.1007/s11274-017-2314-6

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [IL]; Methodology [NM]; Formal analysis and investigation: [IL, CA, MA, CR, MNA]; Writing—original draft preparation: [IL, NM] Writing—review and editing: [IL, UH, SA, MM, MNA]; Supervision: [IL].

Corresponding author

Correspondence to Iram Liaqat.

Ethics declarations

Competing interest

All authors declare no conflict of interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent for publications

Not applicable.

Research involving human and animals participants

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 299 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaqat, I., Muhammad, N., Ara, C. et al. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms. Mol Biol Rep 50, 3985–3997 (2023). https://doi.org/10.1007/s11033-023-08334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08334-3

Keywords

Navigation