Skip to main content
Log in

A review: structure–activity relationship between saponins and cellular immunity

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Saponins, which exhibit many different biological and pharmacological activities, are present in a wide range of plant species and in some marine organisms. Notably, the researchers have found that saponins can activate the immune system in mammals. The strength of this function is closely related to the chemical structure of saponins. The present study of the structure–activity relationship suggests that aglycones, glycochains on aglycones and special functional groups of saponins affect the immune activity of saponins. This paper reviews the effects of different saponins on cellular immunity. As well as the structure–activity relationship of saponins. It is hoped that the information integrated in this paper will provide readers with information on the effects of saponins on cellular immunity and promote the further study of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oleszek WA (2002) Chromatographic determination of plant saponins. J Chromatogr A 967(1):147–162. https://doi.org/10.1016/s0021-9673(01)01556-4

    Article  CAS  PubMed  Google Scholar 

  2. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94(2–3):219–243. https://doi.org/10.1016/j.jep.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  3. Dong J, Liang W, Wang T, Sui J, Wang J, Deng Z, Chen D (2019) Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacol Res 144:66–72. https://doi.org/10.1016/j.phrs.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49(6):439–462. https://doi.org/10.3109/10409238.2014.953628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oleszek W, Bialy Z (2006) Chromatographic determination of plant saponins—an update (2002–2005). J Chromatogr A 1112(1–2):78–91. https://doi.org/10.1016/j.chroma.2006.01.037

    Article  CAS  PubMed  Google Scholar 

  6. Nikitina SA, Khabibrakhmanova VR, Sysoeva MA (2016) Khimicheskiĭ sostav i biologicheskaia aktivnost’ triterpenovykh i steroidnykh soedineniĭ chagi [Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga)]. Biomed Khim 62(4):369–375. https://doi.org/10.18097/PBMC20166204369

    Article  CAS  PubMed  Google Scholar 

  7. Yao L, Lu J, Wang J, Gao WY (2020) Advances in biosynthesis of triterpenoid saponins in medicinal plants. Chin J Nat Med 18(6):417–424. https://doi.org/10.1016/S1875-5364(20)30049-2

    Article  CAS  PubMed  Google Scholar 

  8. Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R (2015) Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci 26(6):699–719. https://doi.org/10.1515/revneuro-2015-0009

    Article  CAS  PubMed  Google Scholar 

  9. Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J (2017) Panax notoginseng saponins for treating coronary artery disease: a functional and mechanistic overview. Front Pharmacol 8:702. https://doi.org/10.3389/fphar.2017.00702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao Y, Sun X, Yu X, Gao R, Yin L (2018) Saponins from Panax notoginseng leaves improve the symptoms of aplastic anemia and aberrant immunity in mice. Biomed Pharmacother 102:959–965. https://doi.org/10.1016/j.biopha.2018.03.175

    Article  CAS  PubMed  Google Scholar 

  11. Wang QH, Kuang N, Hu WY, Yin D, Wei YY, Hu TJ (2020) The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies. J Vet Sci 21(4):e61. https://doi.org/10.4142/jvs.2020.21.e61

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang Z, Chen A, Sun H, Ye Y, Fang W (2007) Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 25(1):161–169. https://doi.org/10.1016/j.vaccine.2006.05.075

    Article  CAS  PubMed  Google Scholar 

  13. Sun H, Ye Y, Pan Y (2005) Immunological-adjuvant saponins from the roots of Panax notoginseng. Chem Biodivers 2(4):510–515. https://doi.org/10.1002/cbdv.200590032

    Article  CAS  PubMed  Google Scholar 

  14. Wei JR, Wen X, Bible PW, Li Z, Nussenblatt RB, Wei L (2017) Panax notoginseng saponin controls IL-17 expression in helper T cells. J Ocul Pharmacol Ther 33(4):285–289. https://doi.org/10.1089/jop.2016.0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Feng Y, Wang W, Jia L, Zhang J (2021) Characterization and hepatoprotections of Ganoderma lucidum polysaccharides against multiple organ dysfunction syndrome in mice. Oxid Med Cell Longev 2021:9703682. https://doi.org/10.1155/2021/9703682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin YL, Shih C, Cheng PY, Chin CL, Liou AT, Lee PY, Chiang BL (2020) A polysaccharide purified from Ganoderma lucidum acts as a potent mucosal adjuvant that promotes protective immunity against the lethal challenge with enterovirus A71. Front Immunol 11:561758. https://doi.org/10.3389/fimmu.2020.561758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radwan FF, Perez JM, Haque A (2011) Apoptotic and immune restoration effects of ganoderic acids define a new prospective for complementary treatment of cancer. J Clin Cell Immunol S3:4. https://doi.org/10.4172/2155-9899.S3-004

    Article  PubMed  Google Scholar 

  18. Wang G, Zhao J, Liu J, Huang Y, Zhong JJ, Tang W (2007) Enhancement of IL-2 and IFN-gamma expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int Immunopharmacol 7(6):864–870. https://doi.org/10.1016/j.intimp.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ (2021) Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 22(2):840. https://doi.org/10.3892/etm.2021.10272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kenarova B, Neychev H, Hadjiivanova C, Petkov VD (1990) Immunomodulating activity of ginsenoside Rg1 from Panax ginseng. Jpn J Pharmacol 54(4):447–454. https://doi.org/10.1254/jjp.54.447

    Article  CAS  PubMed  Google Scholar 

  21. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H (2004) Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 4(2):235–244. https://doi.org/10.1016/j.intimp.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Yang SH, Hong CY, Yu CL (2001) Decreased serum IgE level, decreased IFN-gamma and IL-5 but increased IL-10 production, and suppressed cyclooxygenase 2 mRNA expression in patients with perennial allergic rhinitis after treatment with a new mixed formula of Chinese herbs. Int Immunopharmacol 1(6):1173–1182. https://doi.org/10.1016/s1567-5769(01)00051-0

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka A, Ohashi Y, Kakinoki Y, Washio Y, Yamada K, Nakai Y, Nakano T, Nakai Y, Ohmoto Y (1998) The herbal medicine shoseiryu-to inhibits allergen-induced synthesis of tumour necrosis factor alpha by peripheral blood mononuclear cells in patients with perennial allergic rhinitis. Acta Otolaryngol Suppl 538:118–125

    CAS  PubMed  Google Scholar 

  24. Lee JS, Lee YN, Lee YT, Hwang HS, Kim KH, Ko EJ, Kim MC, Kang SM (2015) Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 7(2):1021–1036. https://doi.org/10.3390/nu7021021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang P (2017) Ginsenoside-Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol Rep 37(3):1497–1502. https://doi.org/10.3892/or.2017.5392

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Wang Y, Yang D, Zhang C, Zhang N, Li M, Liu Y (2015) Platycodon grandifloras—an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol 164:147–161. https://doi.org/10.1016/j.jep.2015.01.052

    Article  CAS  PubMed  Google Scholar 

  27. Choi CY, Kim JY, Kim YS, Chung YC, Seo JK, Jeong HG (2001) Aqueous extract isolated from Platycodon grandiflorum elicits the release of nitric oxide and tumor necrosis factor-alpha from murine macrophages. Int Immunopharmacol 1(6):1141–1151. https://doi.org/10.1016/s1567-5769(01)00047-9

    Article  CAS  PubMed  Google Scholar 

  28. Xie Y, He SW, Sun HX, Li D (2010) Platycodin D2 improves specific cellular and humoral responses to hepatitis B surface antigen in mice. Chem Biodivers 7(1):178–185. https://doi.org/10.1002/cbdv.200900002

    Article  CAS  PubMed  Google Scholar 

  29. Xie Y, Ye YP, Sun HX, Li D (2008) Contribution of the glycidic moieties to the haemolytic and adjuvant activity of platycodigenin-type saponins from the root of Platycodon grandiflorum. Vaccine 26(27–28):3452–3460. https://doi.org/10.1016/j.vaccine.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  30. Xie W, Meng X, Zhai Y, Zhou P, Ye T, Wang Z, Sun G, Sun X (2018) Panax notoginseng Saponins: a review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules 23(4):940. https://doi.org/10.3390/molecules23040940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song Ning LI, Shujin CONGB, Chunhua WEI, Jun CONG, Ni Zhiyu YuF (2009) Effects of CCK-8 on Th1/Th2 balance in splenocytes of mice immunized with KLH. Chin J Pathophysiol 02:313–317

    Google Scholar 

  32. Qiling H, Ning S, Dongjian Li, Shiguang H, Zengfang Z (2011) Effects of Baicalaria on serum IgG1 and IgG2a levels in mice with experimental periodontitis. Chin J Pathophysiol 01:171–174

    Google Scholar 

  33. Guang C, Chen J, Sang S, Cheng S (2014) Biological functionality of soyasaponins and soyasapogenols. J Agric Food Chem 62(33):8247–8255. https://doi.org/10.1021/jf503047a

    Article  CAS  PubMed  Google Scholar 

  34. Sun T, Yan X, Guo W, Zhao D (2014) Evaluation of cytotoxicity and immune modulatory activities of soyasaponin Ab: an in vitro and in vivo study. Phytomedicine 21(13):1759–1766. https://doi.org/10.1016/j.phymed.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  35. Qiao N, Liu Q, Meng H, Zhao D (2014) Haemolytic activity and adjuvant effect of soyasaponins and some of their derivatives on the immune responses to ovalbumin in mice. Int Immunopharmacol 18(2):333–339. https://doi.org/10.1016/j.intimp.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  36. Fußbroich D, Schubert R, Schneider P, Zielen S, Beermann C (2015) Impact of soyasaponin I on TLR2 and TLR4 induced inflammation in the MUTZ-3-cell model. Food Funct 6(3):1001–1010. https://doi.org/10.1039/c4fo01065e

    Article  PubMed  Google Scholar 

  37. He Z, Tian Y, Zhang X, Bing B, Zhang L, Wang H, Zhao W (2012) Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Nat Prod Res 26(23):2243–2246. https://doi.org/10.1080/14786419.2011.648192

    Article  CAS  PubMed  Google Scholar 

  38. Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61(1):27–35. https://doi.org/10.1080/01635580802357352

    Article  CAS  PubMed  Google Scholar 

  39. Dong M, Meng Z, Kuerban K, Qi F, Liu J, Wei Y, Wang Q, Jiang S, Feng M, Ye L (2018) Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota. Cell Death Dis 9(10):1039. https://doi.org/10.1038/s41419-018-1099-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang C, Yu YM, Qi QL, Wu XD, Wang J, Tang SA (2019) Steroidal saponins from the rhizome of Polygonatum sibiricum. J Asian Nat Prod Res 21(3):197–206. https://doi.org/10.1080/10286020.2018.1478815

    Article  CAS  PubMed  Google Scholar 

  41. Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W (2018) The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 214:274–291. https://doi.org/10.1016/j.jep.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  42. Tatsuno I, Gottschall PE, Arimura A (1991) Inhibition of mitogen-stimulated proliferation of murine splenocytes by a novel neuropeptide, pituitary adenylate cyclase activating polypeptide: a comparative study with vasoactive intestinal peptide. Endocrinology 128(2):728–734. https://doi.org/10.1210/endo-128-2-728

    Article  CAS  PubMed  Google Scholar 

  43. Sun H, Yang Z, Ye Y (2006) Structure and biological activity of protopanaxatriol-type saponins from the roots of Panax notoginseng. Int Immunopharmacol 6(1):14–25. https://doi.org/10.1016/j.intimp.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  44. Sun HX, Qin F, Ye YP (2005) Relationship between haemolytic and adjuvant activity and structure of protopanaxadiol-type saponins from the roots of Panax notoginseng. Vaccine 23(48–49):5533–5542. https://doi.org/10.1016/j.vaccine.2005.07.036

    Article  CAS  PubMed  Google Scholar 

  45. Kitagawa I, Saito M, Taniyama T, Yoshikawa M (1985) Saponin and sapogenol. XXX VIII. Structure of soyasaponin A2, a bisdesmoside of soyasapogenol A, from soybean, the seeds of Glycine max MERRIL. Chem Pharm Bull 33:598–608

    Article  CAS  Google Scholar 

  46. Kitagawa I, Yoshikawa M, Yoshioka I (1976) Saponin and sapogenol. XIII. Structures of three soybean saponins: soyasaponin I, soyasaponin II, and soyasaponin III. Chem Pharm Bull 24:121–129

    Article  CAS  Google Scholar 

  47. Furtado NAJC, Pirson L, Edelberg H, Miranda ML, Loira-Pastoriza C, Preat V, Larondelle Y, André CM (2017) Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules 22(3):400. https://doi.org/10.3390/molecules22030400

    Article  CAS  Google Scholar 

  48. Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M (2003) Relationship between adjuvant activity and amphipathic structure of soyasaponins. Vaccine 21(17–18):2145–2151. https://doi.org/10.1016/s0264-410x(02)00739-9

    Article  CAS  PubMed  Google Scholar 

  49. Sun H, Chen L, Wang J, Wang K, Zhou J (2011) Structure-function relationship of the saponins from the roots of Platycodon grandiflorum for hemolytic and adjuvant activity. Int Immunopharmacol 11(12):2047–2056. https://doi.org/10.1016/j.intimp.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  50. Lee SJ, Kim HW, Lee S, Kwon RH, Na H, Kim JH, Wee CD, Yoo SM, Lee SH (2021) Characterization of Saponins from various parts of Platycodon grandiflorum using UPLC-QToF/MS. Molecules 27(1):107. https://doi.org/10.3390/molecules27010107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tada A, Kaneiwa Y, Shoji J, Shibata S (1975) Studies on the saponins of the root of Platycodon grandiflorum A. De Candolle. I. Isolation and the structure of platycodin-D. Chem Pharm Bull (Tokyo). 23(11):2965–2972. https://doi.org/10.1248/cpb.23.2965

    Article  CAS  PubMed  Google Scholar 

  52. Chen F, Ni Y, Ye Y, Sun H, Li X, Xu S (2010) Comparison of immunosuppressive activity of stephanoside E and its aglycone from Stephanotis mucronata in vitro. Int Immunopharmacol 10(10):1153–1160. https://doi.org/10.1016/j.intimp.2010.06.021

    Article  CAS  PubMed  Google Scholar 

  53. Chen FY, Ye YP, Li XY, Shi H (2009) Acute toxicity test and inhibition effects of Stemucronatoside K on the cellular and humoral immune responses in vivo. Chin Arch Tradit Chin Med 27(3):608–610

    CAS  Google Scholar 

  54. Ye Y, Chen F, Sun H, Li X, Xu S (2008) Stemucronatoside K, a novel C(21) steroidal glycoside from Stephanotis mucronata, inhibited the cellular and humoral immune response in mice. Int Immunopharmacol 8(9):1231–1238. https://doi.org/10.1016/j.intimp.2008.04.014

    Article  CAS  PubMed  Google Scholar 

  55. Sun H, Zheng Q (2005) Haemolytic activities and adjuvant effect of Gynostemma pentaphyllum saponins on the immune responses to ovalbumin in mice. Phytother Res 19(10):895–900. https://doi.org/10.1002/ptr.1754

    Article  CAS  PubMed  Google Scholar 

  56. Yang ZG, Sun HX, Fang WH (2005) Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice. Vaccine 23(44):5196–5203. https://doi.org/10.1016/j.vaccine.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  57. Bedir E, Pugh N, Calis I, Pasco DS, Khan IA (2000) Immunostimulatory effects of cycloartane-type triterpene glycosides from astragalus species. Biol Pharm Bull 23(7):834–837. https://doi.org/10.1248/bpb.23.834

    Article  CAS  PubMed  Google Scholar 

  58. Sun HX (2006) Adjuvant effect of Achyranthes bidentata saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine 24(17):3432–3439. https://doi.org/10.1016/j.vaccine.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  59. Wang B, Ge ZD, Zhou AW, Chen MZ (1999) Effects of gypenosides on immune function of rats in vitro. Tradit Chin Drug Res Clin Pharmacol 10:36–37

    Google Scholar 

  60. Matsuda H, Murakami T, Ikebata A, Yamahara J, Yoshikawa M (1999) Bioactive saponins and glycosides. XIV. Structure elucidation and immunological adjuvant activity of novel protojujubogenin type triterpene bisdesmosides, protojujubosides A, B, and B1, from the seeds of Zizyphus jujuba var. spinosa (Zizyphi Spinosi Semen). Chem Pharm Bull 47(12):1744–1748

    Article  CAS  Google Scholar 

  61. Tezuka Y, Honda K, Banskota AH, Thet MM, Kadota S (2000) Kinmoonosides A-C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in Myanmar. J Nat Prod 63(12):1658–1664

    Article  CAS  PubMed  Google Scholar 

  62. Yoshikawa M, Murakami T, Komatsu H, Matsuda H (1998) Medicinal foodstuffs. XII. Saponin constituents with adjuvant activity from hyacinth bean, the seeds of Dolichos lablab L. (1): structures of lablabosides A, B, and C. Chem Pharm Bull (Tokyo) 46(5):812–816. https://doi.org/10.1248/cpb.46.812

    Article  CAS  PubMed  Google Scholar 

  63. Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG (2019) Saponins from Quillaja saponaria and Quillaja brasiliensis: particular chemical characteristics and biological activities. Molecules 24(1):171. https://doi.org/10.3390/molecules24010171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marciani DJ (2018) Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci 39(6):573–585. https://doi.org/10.1016/j.tips.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  65. Nico D, Borges RM, Brandão LM, Feijó DF, Gomes DC, Palatnik M, Rodrigues MM, da Silva AJ, Palatnik-de-Sousa CB (2012) The adjuvanticity of Chiococca alba saponins increases with the length and hydrophilicity of their sugar chains. Vaccine 30(21):3169–3179. https://doi.org/10.1016/j.vaccine.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  66. Jacobsen NE, Fairbrother WJ, Kensil CR, Lim A, Wheeler DA, Powell MF (1996) Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohyd Res 280(1):1–14. https://doi.org/10.1016/0008-6215(95)00278-2

    Article  CAS  Google Scholar 

  67. Rhodes J (1989) Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation. J Immunol 143(5):1482–1489

    Article  CAS  PubMed  Google Scholar 

  68. Palatnik de Sousa CB, Santos WR, Casas CP, Paraguai de Souza E, Tinoco LW, da Silva BP, Palatnik M, Parente JP (2004) Protective vaccination against murine visceral leishmaniasis using aldehyde-containing Quillaja saponaria sapogenins. Vaccine 22(19):2470–2479. https://doi.org/10.1016/j.vaccine.2004.01.072

    Article  CAS  PubMed  Google Scholar 

  69. Kensil CR (1996) Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 13(1–2):1–55

    CAS  PubMed  Google Scholar 

  70. Clark GF, Schust DJ (2013) Manifestations of immune tolerance in the human female reproductive tract. Front Immunol 4:26. https://doi.org/10.3389/fimmu.2013.00026

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Die I, Cummings RD (2010) Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 20(1):2–12. https://doi.org/10.1093/glycob/cwp140

    Article  CAS  PubMed  Google Scholar 

  72. Tundup S, Srivastava L, Harn DA Jr (2012) Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 1253:E1–E13. https://doi.org/10.1111/j.1749-6632.2012.06618.x

    Article  CAS  PubMed  Google Scholar 

  73. Soltysik S, Wu JY, Recchia J, Wheeler DA, Newman MJ, Coughlin RT, Kensil CR (1995) Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13(15):1403–1410. https://doi.org/10.1016/0264-410x(95)00077-e

    Article  CAS  PubMed  Google Scholar 

  74. Marciani DJ (2015) Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int Immunopharmacol 29(2):908–913. https://doi.org/10.1016/j.intimp.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  75. National Center for Biotechnology Information (2022) PubChem Patent Summary for US-6262029-B1. https://pubchem.ncbi.nlm.nih.gov/patent/US-6262029-B1. Accessed 23 Oct 2022

  76. Chea EK, Fernández-Tejada A, Damani P, Adams MM, Gardner JR, Livingston PO, Ragupathi G, Gin DY (2012) Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J Am Chem Soc 134(32):13448–13457. https://doi.org/10.1021/ja305121q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Press JB, Reynolds RC, May RD, Marciani DJ (2000) Structure/function relationships of immunostimulating saponins. Stud Nat Prod Chem 24:131–174

    Article  CAS  Google Scholar 

  78. Marciani DJ (2003) Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discovery Today 8(20):934–943. https://doi.org/10.1016/s1359-6446(03)02864-2

    Article  CAS  PubMed  Google Scholar 

  79. Gevrenova R, Bardarov V, Bardarov K, Voutquenne-Nazabadioko L, Henry M (2018) Selective profiling of saponins from Gypsophila trichotoma Wend by HILIC Separation and HRMS detection. Phytochem Anal 29(3):250–274. https://doi.org/10.1002/pca.2739

    Article  CAS  PubMed  Google Scholar 

  80. Bomford R, Stapleton M, Winsor S, Beesley JE, Jessup EA, Price KR, Fenwick GR (1992) Adjuvanticity and ISCOM formation by structurally diverse saponins. Vaccine 10(9):572–577. https://doi.org/10.1016/0264-410x(92)90435-m

    Article  CAS  PubMed  Google Scholar 

  81. Gevrenova R, Zaharieva MM, Kroumov AD, Voutquenne-Nazabadioko L, Zheleva-Dimitrova D, Balabanova V, Hajdenski HM, Konstantinov S (2019) Gypsophila saponins enhance the cytotoxicity of etoposide in HD-MY-Z lymphoma cells. Food Chem Toxicol 133:110777. https://doi.org/10.1016/j.fct.2019.110777

    Article  CAS  PubMed  Google Scholar 

  82. Zhang J, Cao W, Tian J, Yue R, Li L, Guo B, Shan L, Yu B, Zhang W (2012) Evaluation of novel saponins from Psammosilene tunicoides and their analogs as immunomodulators. Int Immunopharmacol 14(1):21–26. https://doi.org/10.1016/j.intimp.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  83. Nico D, Santos FN, Borja-Cabrera GP, Palatnik M, Palatnik de Sousa CB (2007) Assessment of the monoterpene, glycidic and triterpene-moieties’ contributions to the adjuvant function of the CP05 saponin of Calliandra pulcherrima Benth during vaccination against experimental visceral leishmaniasis. Vaccine 25(4):649–658. https://doi.org/10.1016/j.vaccine.2006.08.035

    Article  CAS  PubMed  Google Scholar 

  84. Ji KY, Kim KM, Kim YH, Im AR, Lee JY, Park B, Na M, Chae S (2019) The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine 59:152789. https://doi.org/10.1016/j.phymed.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  85. Kawase O, Ohno O, Suenaga K, Xuan X (2016) Immunological adjuvant activity of pectinioside A, the steroidal saponin from the starfish Patiria pectinifera. Nat Prod Commun 11(5):605–606

    PubMed  Google Scholar 

  86. Zhou JR, Yamada R, Huruiti E, Kitahara N, Nakamura H, Fang J, Nohara T, Yokomizo K (2022) Ripe tomato saponin esculeoside A and sapogenol esculeogenin A suppress CD4+ T lymphocyte activation by modulation of Th2/Th1/Treg differentiation. Nutrients 14(10):2021. https://doi.org/10.3390/nu14102021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MH370). Major Science and Technology Innovation in Shandong Province (Grant No. 2017CXGC1307). Ji’nan Science and Technology Project (Grant No. 201303055). Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education. Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research and Traditional Chinese Medicine Resources and Utilization Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchao Han.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Ma, X., Li, C. et al. A review: structure–activity relationship between saponins and cellular immunity. Mol Biol Rep 50, 2779–2793 (2023). https://doi.org/10.1007/s11033-022-08233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08233-z

Keywords

Navigation