Skip to main content
Log in

Transient receptor potential channel stimulation induced oxidative stress and apoptosis in the colon of mice with colitis-associated colon cancer: modulator role of Sambucus ebulus L.

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Increased Ca2+ entry causes an increase in tumor cell proliferation, apoptosis, cytosolic reactive free oxygen species (cyROS), and mitochondrial ROS (miROS) in tumor cells. The cyROS and miROS stimulate the cation channels, including the TRPA1, TRPM2, and TRPV1. Sambucus ebulus L (SEB) (Dwarf Elder) induced both antioxidant and anticancer effects in the human hepatocarcinoma and human colon carcinoma cancer cell lines. We investigated the etiology of colorectal cancer and the impact of three channels, as well as the protective effects of SEB on apoptosis, cyROS, and miROS in the colon of mice with colitis-associated colon cancer (AOM/DSS).

Methods

A total 28 mice were equally divided into four groups as control, SEB (100 mg/kg/day for 14 days), AOM/DSS, and SEB + AOM/DSS. Azoxymethane/dextran sulfate sodium-induced colon cancer associated with colitis was induced in the AOM/DSS groups within 10 weeks. At the end of the experiments, the colon samples were removed from the mice.

Results

The protein bands of caspase − 3, TRPA1, TRPM2, and TRPV1 were increased by the treatments of AOM/DSS. The levels of apoptosis, cyROS, cleaved caspase − 3, and cleaved caspase − 9, as well as the depolarization of the mitochondrial membrane, all increased in the AOM/DSS group. Although they were reduced in the SEB and AOM/DSS + SEB groups by the treatments of SEB, TRPA1 (AP18), TRPM2 (ACA), and TRPV1 (capsazepine) antagonists, the apoptotic and oxidant values were further elevated in the AOM/DSS group by the treatments of TRPA1 (cinnamaldehyde), TRPM2 (H2O2), and TRPV1 (capsaicin) agonists.

Conclusion

The activations of TRPA1, TRPM2, and TRPV1 channels induced the increase of apoptotic and oxidant actions in the colon cancer cells, although their inhibition via SEB treatment decreased the actions. Hence, TRPA1, TRPM2, and TRPV1 activations could be used as effective agents in the treatment of colon tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of present study are available from the corresponding author upon request.

Abbreviations

ACA:

N-(p-amylcinnamoyl)anthranilic acid

ADPR:

ADP-ribose

Ca2+ :

Calcium ion

CAP:

Capsaicin

CASP/3:

Cleaved caspase − 3

CASP/9:

Cleaved caspase − 9

CiNN:

Cinnamaldehyde

CPZ:

Capsazepine

cyROS:

Cytosolic reactive oxygen species

miPOT:

Mitochondrial membrane potential

miROS:

Mitochondrial reactive oxygen species

TRP:

Transient receptor potential

TRPA1:

Transient receptor ankyrin 1

TRPM2:

Transient receptor potential melastatin 2

TRPV1:

Transient receptor potential vanilloid 1

References

  1. Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P (2021) The impact of probiotics on intestinal mucositis during chemotherapy for colorectal cancer: a comprehensive review of animal studies. Int J Mol Sci 22(17):9347. https://doi.org/10.3390/ijms22179347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. NIH (2022) National Cancer Institute. Cancer Stat Facts: Colorectal cancer. 2022. https://seer.cancer.gov/statfacts/html/colorect.html

  3. Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P (2020) The role of melatonin in colorectal cancer treatment: a comprehensive review. Ther Adv Med Oncol 12:1758835920931714. https://doi.org/10.1177/1758835920931714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salehi A, Hosseini SM, Kazemi S (2022) Antioxidant and anticarcinogenic potentials of propolis for dimethylhydrazine-induced colorectal cancer in wistar rats. Biomed Res Int 2022:8497562. https://doi.org/10.1155/2022/8497562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roma A, Ovadje P, Steckle M, Nicoletti L, Saleem A, Pandey S (2015) Selective induction of apoptosis by Azadarichta indica leaf extract by targeting oxidative vulnerabilities in human cancer cells. J Pharm Pharm Sci 18(4):729–746. https://doi.org/10.18433/j3vg76

    Article  PubMed  Google Scholar 

  6. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  7. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110. https://doi.org/10.1016/j.drup.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Rizopoulos T, Assimakopoulou M (2021) Transient receptor potential (TRP) channels in human colorectal cancer: evidence and perspectives. Histol Histopathol 36(5):515–526. https://doi.org/10.14670/HH-18-308

    Article  CAS  PubMed  Google Scholar 

  9. Gwak EJ, Kim D, Hwang HY, Kwon HJ (2022) Mitochondrial ROS produced in human colon carcinoma associated with cell survival via autophagy. Cancers (Basel) 14(8):1883. https://doi.org/10.3390/cancers14081883

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Yang YM, Hu YY, Ouyang L, Sun ZH, Yin XF, Li N, He QY, Wang Y (2022) Inhibition of nuclear deacetylase Sirtuin-1 induces mitochondrial acetylation and calcium overload leading to cell death. Redox Biol 53:102334. https://doi.org/10.1016/j.redox.2022.102334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32(3):134–141. https://doi.org/10.3109/10799893.2012.672994

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Li J, Jin L, Lei K, Liu H, Yang Y (2019) Fibulin-5 contributes to colorectal cancer cell apoptosis via the ROS/MAPK and akt signal pathways by downregulating transient receptor potential cation channel subfamily V member 1. J Cell Biochem 120(10):17838–17846. https://doi.org/10.1002/jcb.29051

    Article  CAS  PubMed  Google Scholar 

  13. Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P, Izzo AA (2014) Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 35(12):2787–2797. https://doi.org/10.1093/carcin/bgu205

    Article  CAS  PubMed  Google Scholar 

  14. Deveci HA, Akyuva Y, Nur G, Nazıroğlu M (2019) Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed Pharmacother 111:292–304. https://doi.org/10.1016/j.biopha.2018.12.077

    Article  CAS  PubMed  Google Scholar 

  15. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857. https://doi.org/10.1016/s0896-6273(04)00150-3

    Article  CAS  PubMed  Google Scholar 

  16. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/s1097-2765(01)00438-5

    Article  CAS  PubMed  Google Scholar 

  17. Nazıroğlu M (2008) Lückhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33(7):1256–1262. https://doi.org/10.1007/s11064-007-9577-5

    Article  CAS  PubMed  Google Scholar 

  18. Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148(3):264–273. https://doi.org/10.1038/sj.bjp.0706739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441. https://doi.org/10.1038/18906

    Article  CAS  PubMed  Google Scholar 

  20. Szallasi A, Blumberg PM, Annicelli LL, Krause JE, Cortright DN (1999) The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol Pharmacol 56(3):581–587. https://doi.org/10.1124/mol.56.3.581

    Article  CAS  PubMed  Google Scholar 

  21. Yazğan Y, Nazıroğlu M (2017) Ovariectomy-Induced mitochondrial oxidative stress, apoptosis, and Calcium Ion Influx through TRPA1, TRPM2, and TRPV1 are prevented by 17β-Estradiol, tamoxifen, and Raloxifene in the Hippocampus and dorsal Root ganglion of rats. Mol Neurobiol 54(10):7620–7638. https://doi.org/10.1007/s12035-016-0232-5

    Article  CAS  PubMed  Google Scholar 

  22. Yang MH, Jung SH, Sethi G, Ahn KS (2019) Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases. Molecules 24(5):995. https://doi.org/10.3390/molecules24050995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ertilav K, Nazıroğlu M, Ataizi ZS, Yıldızhan K (2021) Melatonin and selenium suppress docetaxel-induced TRPV1 activation, neuropathic pain and oxidative neurotoxicity in mice. Biol Trace Elem Res 199(4):1469–1487. https://doi.org/10.1007/s12011-020-02250-4

    Article  CAS  PubMed  Google Scholar 

  24. Fonseca BM, Correia-da-Silva G, Teixeira NA (2018) Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. J Physiol Biochem 74(2):261–272. https://doi.org/10.1007/s13105-018-0611-7

    Article  CAS  PubMed  Google Scholar 

  25. Nazıroğlu M, Çiğ B, Blum W, Vizler C, Buhala A, Marton A, Katona R, Jósvay K, Schwaller B, Oláh Z, Pecze L (2017) Targeting breast cancer cells by MRS1477, a positive allosteric modulator of TRPV1 channels. PLoS ONE 12(6):e0179950. https://doi.org/10.1371/journal.pone.0179950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jabbari M, Daneshfard B, Emtiazy M, Khiveh A, Hashempur MH (2017) Biological Effects and clinical applications of dwarf elder (Sambucus ebulus L): a review. J Evid Based Complementary Altern Med 22(4):996–1001. https://doi.org/10.1177/2156587217701322

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiménez P, Tejero J, Cordoba-Diaz D, Quinto EJ, Garrosa M, Gayoso MJ, Girbés T (2015) Ebulin from dwarf elder (Sambucus ebulus L.): a mini-review. Toxins (Basel) 7(3):648–658. https://doi.org/10.3390/toxins7030648

    Article  CAS  PubMed  Google Scholar 

  28. Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H (2015) Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol 31(4–5):231–239. https://doi.org/10.1007/s10565-015-9307-8

    Article  PubMed  Google Scholar 

  29. Garrosa M, Jiménez P, Tejero J, Cabrero P, Cordoba-Diaz D, Quinto EJ, Gayoso MJ, Girbés T (2015) Toxicity of the anti-ribosomal lectin ebulin f in lungs and intestines in elderly mice. Toxins (Basel) 7(2):367–379. https://doi.org/10.3390/toxins7020367

    Article  CAS  PubMed  Google Scholar 

  30. Gürbüz İ, Ozcelik B, Günbatan T, Akkol EK, Sahinoz M, Akaydın G (2021) Antibacterial, antifungal and enzyme inhibitory effects of selected plants from Turkey. Pak J Pharm Sci 34(3):1011–1017

    PubMed  Google Scholar 

  31. Tasinov O, Dincheva I, Badjakov I, Kiselova-Kaneva Y, Galunska B, Nogueiras R, Ivanova D (2021) Phytochemical composition, anti-inflammatory and ER stress-reducing potential of Sambucus ebulus L. fruit extract. Plants (Basel) 10(11):2446. https://doi.org/10.3390/plants10112446

    Article  CAS  PubMed  Google Scholar 

  32. Abdala S, Dévora S, Martín-Herrera D, Pérez-Paz P (2014) Antinociceptive and anti-inflammatory activity of Sambucus palmensis link, an endemic Canary Island species. J Ethnopharmacol 155(1):626–32. https://doi.org/10.1016/j.jep.2014.06.002

    Article  PubMed  Google Scholar 

  33. Wang J, Ding K, Wang Y, Yan T, Xu Y, Deng Z, Lin W, Zhang L, Zhu W, Zhao R, Zhou Y, Liu Z (2022) Wumei Pill ameliorates AOM/DSS-Induced Colitis-Associated Colon cancer through inhibition of inflammation and oxidative stress by regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) mediated hedgehog signaling in mice. Oxid Med Cell Longev 2022:4061713. https://doi.org/10.1155/2022/4061713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118(2):560–570. https://doi.org/10.1172/JCI32453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Çınar R (2022) Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. 14:1063–1073. https://doi.org/10.37212/jcnos.1147935

  36. Ertilav K (2019) Levetiracetam modulates hypoxia-induced inflammation and oxidative stress via inhibition of TRPV1 channel in the DBTRG glioblastoma cell line. J Cell Neurosci Oxid Stress 11(3):885–894. https://doi.org/10.37212/jcnos.715227

    Article  Google Scholar 

  37. Akyuva Y (2020) Clostridium botulinum neurotoxin a inhibits DBTRG glioblastoma cell proliferation and TRPV1 channel signaling pathways. J Cell Neurosci Oxid Stress 12(1):903–913. https://doi.org/10.37212/jcnos.809635

    Article  Google Scholar 

  38. Sivandzade F, Bhalerao A, Cucullo L (2019) Analysis of the mitochondrial membrane potential using the Cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc 9(1):e3128. https://doi.org/10.21769/BioProtoc.3128

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ibrahim S, Dakik H, Vandier C, Chautard R, Paintaud G, Mazurier F, Lecomte T, Guéguinou M, Raoul W (2019) Expression profiling of Calcium channels and calcium-activated Potassium channels in Colorectal Cancer. Cancers (Basel) 11(4):561. https://doi.org/10.3390/cancers11040561

    Article  CAS  PubMed  Google Scholar 

  40. Ahlam AA, Shaniba VS, Jayasree PR, Manish Kumar PR (2021) Spondias pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles induce dual modes of apoptotic-necrotic death in HCT 116 and K562 cells. Biol Trace Elem Res 199(5):1778–1801. https://doi.org/10.1007/s12011-020-02303-8

    Article  CAS  PubMed  Google Scholar 

  41. Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C, Geppetti P, Nassini R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism.Pflugers Arch.2012463(4):561–9. https://doi.org/10.1007/s00424-011-1071-x

  42. Övey İS, Naziroğlu M (2015) Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225–233. https://doi.org/10.1016/j.neuroscience.2014.09.078

    Article  CAS  PubMed  Google Scholar 

  43. Anderson KJ, Cormier RT, Scott PM (2019) Role of ion channels in gastrointestinal cancer. World J Gastroenterol 25(38):5732–5772. https://doi.org/10.3748/wjg.v25.i38.5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee DY, Song MY, Kim EH (2021) Role of oxidative stress and Nrf2/KEAP1 signaling in Colorectal Cancer: mechanisms and therapeutic perspectives with phytochemicals. Antioxid (Basel) 10(5):743. https://doi.org/10.3390/antiox10050743

    Article  CAS  Google Scholar 

  45. Deveci HA, Nazıroğlu M, Nur G (2018) 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol Cell Biochem 439(1–2):189–198. https://doi.org/10.1007/s11010-017-3147-1

    Article  CAS  PubMed  Google Scholar 

  46. De Petrocellis L, Vellani V, Schiano-Moriello A, Marini P, Magherini PC, Orlando P, Di Marzo V (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325(3):1007–1015. https://doi.org/10.1124/jpet.107.134809

    Article  CAS  PubMed  Google Scholar 

  47. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658. https://doi.org/10.1111/j.1471-4159.2006.03907

    Article  CAS  PubMed  Google Scholar 

  48. Cecerska-Heryć E, Surowska O, Heryć R, Serwin N, Napiontek-Balińska S, Dołęgowska B (2021) Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients - a review. Clin Biochem 93:1–8. https://doi.org/10.1016/j.clinbiochem.2021.03.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The antioxidant and cleaved caspase analyses in the current study were performed in 7th International Brain Research School, 27 June and 3 July 2022, Isparta, Türkiye by Dr. Müge Mavioğlu Kaya. (http://2022.brs.org.tr/). The remaining analyses were performed by Prof. Dr. M Nazıroğlu and technicians (Fatih Şahin and Muhammet Şahin- BSN Health Analyses Ltd., Isparta, Türkiye).

Funding

The study was supported by Scientific Unit of Kafkas University (BAP), Kars, Türkiye (Project No: 2022-FM-14. Project owner: Assist. Prof. Dr. Müge Mavioğlu Kaya). There is no financial disclosure in the current study.

Author information

Authors and Affiliations

Authors

Contributions

MMK: Animal experiments, Methodology, Formal analysis, Data curation, Resources, Funding acquisition, Project administration. İK: Animal experiments, Methodology, Formal analysis, Data curation, Resources, Writing – original draft, Writing – review & editing, Funding acquisition, Project administration. MN: Methodology, Formal analysis, Writing – review & editing, Supervision.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The study was approved by Kafkas University (KAU) Experimental Animal Research Center in Kars, Türkiye (Protocol number: KAU-HADYEK 2022/138), and all animals were handled in accordance with the standards of the National Experimental Animal Research Council of KAU.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M.M., Kaya, İ. & Nazıroğlu, M. Transient receptor potential channel stimulation induced oxidative stress and apoptosis in the colon of mice with colitis-associated colon cancer: modulator role of Sambucus ebulus L.. Mol Biol Rep 50, 2207–2220 (2023). https://doi.org/10.1007/s11033-022-08200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08200-8

Keywords

Navigation